05.a sns.clustermap basic sample

Plot a matrix dataset as a hierarchically-clustered heatmap.

Note

The hierarchical clustering has been deactivated.

  • plot main05 a clustermap
  • plot main05 a clustermap

Out:

     A0  A1  A2  A3  A4  A5  A6  A7  A8  A9  A10  A11  A12  A13  A14  A15  A16  A17  A18  A19
A0    3   0   0   0   2   2   2   0   8   4    1    5    3    8    2    3    7    3    3    9
A1    2   4   6   4   2   1   4   8   2   7    3    7    3    4    8    9    1    8    1    9
A2    0   0   3   1   7   6   6   2   5   9    8    0    7    0    0    6    9    2    7    8
A3    4   5   4   2   1   9   0   9   7   1    1    3    2    0    7    2    1    1    1    9
A4    0   1   0   1   6   4   2   2   6   8    8    7    5    9    2    0    2    4    8    9
A5    5   3   8   5   4   2   4   7   3   3    2    9    9    1    0    5    6    3    0    2
A6    5   8   7   9   6   6   1   4   3   9    8    4    4    8    1    8    0    6    1    3
A7    2   8   2   8   8   1   5   9   9   7    0    6    3    9    2    0    4    4    6    3
A8    1   5   6   1   5   7   7   3   3   2    1    9    8    1    0    8    8    7    9    2
A9    1   9   8   4   0   8   2   4   0   4    2    2    2    3    3    5    2    8    1    0
A10   8   6   7   8   0   7   5   9   9   4    0    0    3    0    1    4    1    3    6    9
A11   3   7   8   6   4   4   8   7   0   3    1    8    8    0    0    2    5    9    8    9
A12   8   4   6   0   3   2   9   3   6   5    9    0    3    6    1    5    1    3    1    3
A13   5   8   8   4   6   5   8   4   4   8    8    2    5    2    2    2    3    5    1    6
A14   0   0   4   6   1   8   9   4   3   1    3    3    7    3    3    4    6    4    0    5
A15   8   2   4   7   8   0   7   8   3   4    0    9    8    7    3    4    5    1    2    2
A16   4   6   7   6   8   8   5   2   6   9    1    2    1    6    8    2    2    3    6    3
A17   2   2   8   7   5   7   7   3   5   7    0    0    3    1    7    5    4    2    3    8
A18   4   5   0   4   5   3   1   0   7   5    3    2    7    4    1    7    6    9    4    7
A19   5   5   3   9   0   3   7   8   8   2    6    3    1    2    0    5    2    6    1    8
['g', 'r', 'r', 'b', 'b', 'g', 'b', 'g', 'r', 'r', 'r', 'b', 'b', 'r', 'g', 'g', 'b', 'r', 'g', 'g']
A0     Group g
A1     Group r
A2     Group r
A3     Group b
A4     Group b
A5     Group g
A6     Group b
A7     Group g
A8     Group r
A9     Group r
A10    Group r
A11    Group b
A12    Group b
A13    Group r
A14    Group g
A15    Group g
A16    Group b
A17    Group r
A18    Group g
A19    Group g
dtype: object

11 """
12 # Display 0
13 iris = sns.load_dataset("iris")
14 species = iris.pop("species")
15 lut = dict(zip(species.unique(), "rbg"))
16 row_colors = species.map(lut)
17 """
18
19 # Libraries
20 import numpy as np
21 import pandas as pd
22 import seaborn as sns
23 import matplotlib.pyplot as plt
24
25 # Constants
26 N = 20
27 C = sns.color_palette("Spectral", n_colors=5, as_cmap=False)
28
29 # Create data
30 data = np.random.randint(low=0, high=10, size=(N, N))
31 colors = [np.random.choice(['r', 'g', 'b']) for i in range(N)]
32 series = pd.Series({'A%s'%i:'Group %s'%c for i,c in enumerate(colors)})
33
34 # Create DataFrame
35 df = pd.DataFrame(data,
36     index=['A%s'%i for i in range(N)],
37     columns=['A%s'%i for i in range(N)]
38 )
39
40 # Show
41 print(df)
42 print(colors)
43 print(series)
44
45 # Display 1
46 # ---------
47 # Create colors dictionary
48 col_colors = dict(zip(df.columns, colors))
49
50 # Show
51 g = sns.clustermap(df,
52     figsize=(5,5),
53     row_cluster=False, col_cluster=False,
54     #row_colors=col_colors,
55     col_colors=pd.Series(col_colors),
56     linewidths=0,
57     xticklabels=False, yticklabels=False,
58     center=0, cmap="vlag"
59 )
60
61 # Display 2
62 # ---------
63 # Create colors dictionary
64
65 col_colors = series.map({
66     'Group g': 'g',
67     'Group b': 'b',
68     'Group r': 'r'
69 })
70
71 # Show
72 g = sns.clustermap(df,
73     figsize=(5,5),
74     row_cluster=False, col_cluster=False,
75     #row_colors=col_colors,
76     col_colors=pd.Series(col_colors),
77     linewidths=0,
78     xticklabels=False, yticklabels=False,
79     center=0, cmap="vlag"
80 )
81
82 # Show
83 plt.show()

Total running time of the script: ( 0 minutes 0.513 seconds)

Gallery generated by Sphinx-Gallery