pyamr.core.mari pyamr.core.mari =============== ===============
Classes
- class pyamr.core.mari.MARI(groupby=['SPECIMEN', 'MICROORGANISM', 'LAB_NUMBER', 'SENSITIVITY'])[source]
Multiple Antimicrobial Resistance Index
Methods:
compute
(dataframe, **kwargs)Compute the Multiple Antimicrobial Resistance Index.
compute_v1
(dataframe[, shift, period, ...])Compute MARI v1
compute_v2
(dataframe[, shift, period, ...])Compute MARI v2.
compute_v3
(dataframe[, shift, period, ...])Compute MARI v3.
compute_v4
(dataframe[, shift, period, ...])Compute MARI v4.
grouping
(dataframe, period, cdate)Compute metric with independent groups.
rolling
(dataframe, period, cdate[, shift])Compute metric using rolling approach
- compute(dataframe, **kwargs)[source]
Compute the Multiple Antimicrobial Resistance Index.
- Parameters:
dataframe (pd.DataFrame) – A DataFrame with the susceptibility test interpretations as columns. The default strategies used (see below) expect the following columns [‘sensitive’, ‘intermediate’, ‘resistant’] and if they do not appear they weill be set to zeros.
shift (str) – Frequency value to pass to pd.Grouper.
period (str, int) – Window value to pass to pd.rolling.
cdate (string, default=None) – The column that will be used as date.
return_frequencies (boolean, default=True) – Whether to return the frequencies (isolates) or just the resistance index.
return_isolates (boolean, default=True) – Whether to return the resistance index for each individual isolate.
strategy (string or func, default=’hard’) – The method used to compute sari. The possible options are ‘soft’, ‘medium’ and ‘hard’. In addition, a function with the following signature func(dataframe, **kwargs) can be passed.
soft
as R / R+I+Smedium
as R / R+Shard
as R+I / R+I+Sother
as R+0.5I / R+0.5I+S [Not yet]
**kwargs (arguments to pass the strategy function.)
- Returns:
dataframe (pd.Series or pd.DataFrame) – The resistance index (pd.Series) or a pd.Dataframe with the resistance index (sari), the sums and the frequencies.
isolates (pd.DataFrame) – The resistance index and each of the sensitivity value counts for each individual isolate.
- compute_v1(dataframe, shift=None, period=None, cdate=None, return_frequencies=True, return_isolates=True, **kwargs)[source]
Compute MARI v1
- compute_v2(dataframe, shift=None, period=None, cdate=None, return_frequencies=True, return_isolates=True, **kwargs)[source]
Compute MARI v2.
- compute_v3(dataframe, shift=None, period=None, cdate=None, return_frequencies=True, return_isolates=True, **kwargs)[source]
Compute MARI v3.