02. dataprep

Out:

  0%|          | 0/799 [00:00<?, ?it/s]
Computing series-max-agg-01366a2de6ffbca6d1e9ef985b4cf59f:   0%|          | 0/799 [00:00<?, ?it/s]
Computing series-max-agg-01366a2de6ffbca6d1e9ef985b4cf59f:   0%|          | 0/799 [00:00<?, ?it/s]
Computing series-min-agg-b5e434e390e46a13d2dc9b111720eefc: 100%|##########| 799/799 [00:00<00:00, 4762.67it/s]

Report has been saved to outputs/profile02-report.html!

 5 # Libraries
 6 import pandas as pd
 7
 8 # Specific
 9 from dataprep.eda import create_report
10 from sklearn.datasets import load_iris
11 from pathlib import Path
12
13 # Load data object
14 obj = load_iris(as_frame=True)
15
16 # Create report
17 profile = create_report(obj.data,
18     title="Pandas Profiling Report")
19
20 # Save to file
21 Path('./outputs').mkdir(parents=True, exist_ok=True)
22 profile.save("./outputs/profile02-report.html")
23
24 # Show report in the browser
25 #profile.show_browser()

Total running time of the script: ( 0 minutes 3.988 seconds)

Gallery generated by Sphinx-Gallery