Note
Click here to download the full example code
01. pandas_profiling
Out:
Summarize dataset: 0%| | 0/5 [00:00<?, ?it/s]
Summarize dataset: 0%| | 0/9 [00:00<?, ?it/s, Describe variable:sepal length (cm)]
Summarize dataset: 11%|#1 | 1/9 [00:00<00:00, 36.64it/s, Describe variable:petal width (cm)]
Summarize dataset: 22%|##2 | 2/9 [00:00<00:00, 69.47it/s, Describe variable:sepal width (cm)]
Summarize dataset: 33%|###3 | 3/9 [00:00<00:00, 98.85it/s, Describe variable:petal length (cm)]
Summarize dataset: 44%|####4 | 4/9 [00:00<00:00, 128.61it/s, Get variable types]
Summarize dataset: 45%|####5 | 5/11 [00:00<00:00, 159.85it/s, Calculate auto correlation]
Summarize dataset: 55%|#####4 | 6/11 [00:00<00:00, 138.20it/s, Get scatter matrix]
Summarize dataset: 22%|##2 | 6/27 [00:00<00:00, 137.49it/s, scatter sepal length (cm), sepal length (cm)]
Summarize dataset: 26%|##5 | 7/27 [00:00<00:00, 37.03it/s, scatter sepal length (cm), sepal length (cm)]
Summarize dataset: 26%|##5 | 7/27 [00:00<00:00, 37.03it/s, scatter sepal width (cm), sepal length (cm)]
Summarize dataset: 30%|##9 | 8/27 [00:00<00:00, 37.03it/s, scatter petal length (cm), sepal length (cm)]
Summarize dataset: 33%|###3 | 9/27 [00:00<00:00, 37.03it/s, scatter petal width (cm), sepal length (cm)]
Summarize dataset: 37%|###7 | 10/27 [00:00<00:00, 37.03it/s, scatter sepal length (cm), sepal width (cm)]
Summarize dataset: 41%|#### | 11/27 [00:00<00:01, 14.19it/s, scatter sepal length (cm), sepal width (cm)]
Summarize dataset: 41%|#### | 11/27 [00:00<00:01, 14.19it/s, scatter sepal width (cm), sepal width (cm)]
Summarize dataset: 44%|####4 | 12/27 [00:00<00:01, 14.19it/s, scatter petal length (cm), sepal width (cm)]
Summarize dataset: 48%|####8 | 13/27 [00:00<00:00, 14.19it/s, scatter petal width (cm), sepal width (cm)]
Summarize dataset: 52%|#####1 | 14/27 [00:01<00:01, 11.70it/s, scatter petal width (cm), sepal width (cm)]
Summarize dataset: 52%|#####1 | 14/27 [00:01<00:01, 11.70it/s, scatter sepal length (cm), petal length (cm)]
Summarize dataset: 56%|#####5 | 15/27 [00:01<00:01, 11.70it/s, scatter sepal width (cm), petal length (cm)]
Summarize dataset: 59%|#####9 | 16/27 [00:01<00:01, 10.44it/s, scatter sepal width (cm), petal length (cm)]
Summarize dataset: 59%|#####9 | 16/27 [00:01<00:01, 10.44it/s, scatter petal length (cm), petal length (cm)]
Summarize dataset: 63%|######2 | 17/27 [00:01<00:00, 10.44it/s, scatter petal width (cm), petal length (cm)]
Summarize dataset: 67%|######6 | 18/27 [00:01<00:00, 9.92it/s, scatter petal width (cm), petal length (cm)]
Summarize dataset: 67%|######6 | 18/27 [00:01<00:00, 9.92it/s, scatter sepal length (cm), petal width (cm)]
Summarize dataset: 70%|####### | 19/27 [00:01<00:00, 9.92it/s, scatter sepal width (cm), petal width (cm)]
Summarize dataset: 74%|#######4 | 20/27 [00:01<00:00, 9.51it/s, scatter sepal width (cm), petal width (cm)]
Summarize dataset: 74%|#######4 | 20/27 [00:01<00:00, 9.51it/s, scatter petal length (cm), petal width (cm)]
Summarize dataset: 78%|#######7 | 21/27 [00:01<00:00, 9.51it/s, scatter petal width (cm), petal width (cm)]
Summarize dataset: 81%|########1 | 22/27 [00:01<00:00, 9.31it/s, scatter petal width (cm), petal width (cm)]
Summarize dataset: 81%|########1 | 22/27 [00:01<00:00, 9.31it/s, Get dataframe statistics]
Summarize dataset: 79%|#######9 | 23/29 [00:01<00:00, 9.31it/s, Missing diagram bar]
Summarize dataset: 83%|########2 | 24/29 [00:02<00:00, 9.94it/s, Missing diagram bar]
Summarize dataset: 83%|########2 | 24/29 [00:02<00:00, 9.94it/s, Missing diagram matrix]
Summarize dataset: 86%|########6 | 25/29 [00:02<00:00, 9.94it/s, Take sample]
Summarize dataset: 90%|########9 | 26/29 [00:02<00:00, 9.94it/s, Detecting duplicates]
Summarize dataset: 93%|#########3| 27/29 [00:02<00:00, 9.94it/s, Get alerts]
Summarize dataset: 97%|#########6| 28/29 [00:02<00:00, 9.94it/s, Get reproduction details]
Summarize dataset: 100%|##########| 29/29 [00:02<00:00, 9.94it/s, Completed]
Summarize dataset: 100%|##########| 29/29 [00:02<00:00, 13.02it/s, Completed]
Generate report structure: 0%| | 0/1 [00:00<?, ?it/s]
Generate report structure: 100%|##########| 1/1 [00:01<00:00, 1.60s/it]
Generate report structure: 100%|##########| 1/1 [00:01<00:00, 1.60s/it]
Render HTML: 0%| | 0/1 [00:00<?, ?it/s]
Render HTML: 100%|##########| 1/1 [00:00<00:00, 2.17it/s]
Render HTML: 100%|##########| 1/1 [00:00<00:00, 2.17it/s]
Export report to file: 0%| | 0/1 [00:00<?, ?it/s]
Export report to file: 100%|##########| 1/1 [00:00<00:00, 1766.77it/s]
5 # Libraries
6 import pandas as pd
7
8 # Specific
9 from pandas_profiling import ProfileReport
10 from sklearn.datasets import load_iris
11 from pathlib import Path
12
13 # Load data object
14 obj = load_iris(as_frame=True)
15
16 # Create report
17 profile = ProfileReport(obj.data,
18 title="Pandas Profiling Report",
19 explorative=True)
20
21 # Save to file
22 Path('./outputs').mkdir(parents=True, exist_ok=True)
23 profile.to_file("./outputs/profile01-report.html")
Total running time of the script: ( 0 minutes 5.140 seconds)