01. Explainer Dash

This example runs an app which an interactive user interface to explore the importance of the features using SHAP values.

Out:

"\n# Libraries\nfrom sklearn.ensemble import RandomForestClassifier\nfrom explainerdashboard import ClassifierExplainer\nfrom explainerdashboard import ExplainerDashboard\nfrom explainerdashboard.datasets import titanic_survive\nfrom explainerdashboard.datasets import feature_descriptions\n\n# Get data\nX_train, y_train, X_test, y_test = titanic_survive()\n\n# Create and fit model\nmodel = RandomForestClassifier(n_estimators=50, max_depth=10)     .fit(X_train, y_train)\n\n# Configure explainer\nexplainer = ClassifierExplainer(model, X_test, y_test,\n       cats=['Sex', 'Deck', 'Embarked'],\n       descriptions=feature_descriptions,\n       labels=['Not survived', 'Survived'])\n\n# Run\n#ExplainerDashboard(explainer).run()\n"

12 """
13 # Libraries
14 from sklearn.ensemble import RandomForestClassifier
15 from explainerdashboard import ClassifierExplainer
16 from explainerdashboard import ExplainerDashboard
17 from explainerdashboard.datasets import titanic_survive
18 from explainerdashboard.datasets import feature_descriptions
19
20 # Get data
21 X_train, y_train, X_test, y_test = titanic_survive()
22
23 # Create and fit model
24 model = RandomForestClassifier(n_estimators=50, max_depth=10) \
25     .fit(X_train, y_train)
26
27 # Configure explainer
28 explainer = ClassifierExplainer(model, X_test, y_test,
29        cats=['Sex', 'Deck', 'Embarked'],
30        descriptions=feature_descriptions,
31        labels=['Not survived', 'Survived'])
32
33 # Run
34 #ExplainerDashboard(explainer).run()
35 """

Total running time of the script: ( 0 minutes 0.004 seconds)

Gallery generated by Sphinx-Gallery