.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "_examples\tutorial\metrics\plot_metrics_weights.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code .. rst-class:: sphx-glr-example-title .. _sphx_glr__examples_tutorial_metrics_plot_metrics_weights.py: Metrics - weights ================= Example to show how to use the ``SigmoidA`` class to compute weights. .. todo:: The ``SigmoidA`` class name stands for Sigmoid Approximation. Probably this example should include external references, a better explanation of the sigmoid function and how the ``SigmoidA`` (approximation) is computed and how to use it. .. GENERATED FROM PYTHON SOURCE LINES 12-78 .. image-sg:: /_examples/tutorial/metrics/images/sphx_glr_plot_metrics_weights_001.png :alt: Sigmoid Function, Frequencies, Weights :srcset: /_examples/tutorial/metrics/images/sphx_glr_plot_metrics_weights_001.png :class: sphx-glr-single-img .. code-block:: default :lineno-start: 12 # Libraries import numpy as np import pandas as pd import matplotlib as mpl import matplotlib.pyplot as plt import statsmodels.robust.norms as norms # pyAMR from pyamr.metrics.weights import SigmoidA # Matplotlib options mpl.rc('legend', fontsize=6) mpl.rc('xtick', labelsize=6) mpl.rc('ytick', labelsize=6) mpl.rc('font', size=7) # Set pandas configuration. pd.set_option('display.max_colwidth', 14) pd.set_option('display.width', 150) pd.set_option('display.precision', 4) # Constants length = 100 # Create time-series. x = np.linspace(0,100,100) f = np.concatenate((np.random.rand(35)*50+50, np.random.rand(30)*50+100, np.random.rand(35)*50+150)) # Weight Functions w_functions = [ SigmoidA(r=200, g=0.5, offset=0.0, scale=1.0), SigmoidA(r=200, g=0.5, offset=0.0, scale=1.0, percentiles=[10,90]), SigmoidA(r=200, g=0.5, offset=0.0, scale=1.0, percentiles=[25,75]), SigmoidA(r=200, g=0.5, offset=0.0, scale=1.0, percentiles=[40,50]), SigmoidA(r=200, g=0.5, offset=0.0, scale=1.0, thresholds=[15,85]) ] # Create figure fig, axes = plt.subplots(1,3, figsize=(10,4)) # Plot frequencies axes[1].bar(x, f, color='gray', alpha=0.7, label='Frequency') # Plot weights for i,W in enumerate(w_functions): axes[0].plot(x, W.weights(x), label=W._identifier(short=True)) axes[2].plot(x, W.weights(f), marker='o', alpha=0.5, markeredgecolor='k', markeredgewidth=0.5, markersize=4, linewidth=0.00, label=W._identifier(short=True)) # Titles axes[0].set_title('Sigmoid Function') axes[1].set_title('Frequencies') axes[2].set_title('Weights') # Legends axes[0].legend() axes[1].legend() axes[2].legend() # Tight layout plt.tight_layout() # Show plt.show() .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 0.354 seconds) .. _sphx_glr_download__examples_tutorial_metrics_plot_metrics_weights.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_metrics_weights.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_metrics_weights.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_