.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "_examples\tutorial\guide\plot_step_01.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code .. rst-class:: sphx-glr-example-title .. _sphx_glr__examples_tutorial_guide_plot_step_01.py: Step 01 - Compute AMR metrics ============================= .. GENERATED FROM PYTHON SOURCE LINES 8-27 Loading susceptibility test data -------------------------------- .. image:: ../../../_static/imgs/susceptibility-test-record.png :width: 200 :align: right :alt: ASAI A ``Susceptibility test`` record (see figure 4.1) is composed by laboratory identification number (LID), patient identification number (PID), date, sample type, specimen or culture (e.g. blood or urine), pathogen, antimicrobial, reported status and outcome (resistant, sensitive or intermediate). In this research, the susceptibility test data were grouped firstly by specimen type. Moreover, for each sample type, the data were grouped by pairs (pathogen, antimicrobial) since it is widely accepted by clinicians as detailed in the UK five year strategy in AMR. A small dataset will be used for this example. .. GENERATED FROM PYTHON SOURCE LINES 27-64 .. code-block:: default :lineno-start: 28 # Libraries import numpy as np import pandas as pd import seaborn as sns import matplotlib as mpl import matplotlib.pyplot as plt # Import from pyAMR from pyamr.datasets.load import make_susceptibility try: __file__ TERMINAL = True except: TERMINAL = False # ------------------------------------------- # Load data # ------------------------------------------- # Load data data = make_susceptibility() data = data.drop_duplicates() # Show print("\nData:") print(data) print("\nColumns:") print(data.dtypes) print("\nUnique:") print(data[[ 'microorganism_code', 'antimicrobial_code', 'specimen_code', 'laboratory_number', 'patient_id']].nunique()) .. rst-class:: sphx-glr-script-out .. code-block:: none Data: date_received date_outcome patient_id laboratory_number specimen_code specimen_name specimen_description ... microorganism_name antimicrobial_code antimicrobial_name sensitivity_method sensitivity mic reported 0 2009-01-03 NaN 20091 X428501 BLDCUL NaN blood ... klebsiella AAMI amikacin NaN sensitive NaN NaN 1 2009-01-03 NaN 20091 X428501 BLDCUL NaN blood ... klebsiella AAMO amoxycillin NaN resistant NaN NaN 2 2009-01-03 NaN 20091 X428501 BLDCUL NaN blood ... klebsiella AAUG augmentin NaN sensitive NaN NaN 3 2009-01-03 NaN 20091 X428501 BLDCUL NaN blood ... klebsiella AAZT aztreonam NaN sensitive NaN NaN 4 2009-01-03 NaN 20091 X428501 BLDCUL NaN blood ... klebsiella ACAZ ceftazidime NaN sensitive NaN NaN ... ... ... ... ... ... ... ... ... ... ... ... ... ... .. ... 319117 2009-12-31 NaN 24645 H2012337 BLDCUL NaN blood ... enterococcus AAMO amoxycillin NaN sensitive NaN NaN 319118 2009-12-31 NaN 24645 H2012337 BLDCUL NaN blood ... enterococcus ALIN linezolid NaN sensitive NaN NaN 319119 2009-12-31 NaN 24645 H2012337 BLDCUL NaN blood ... enterococcus ASYN synercid NaN resistant NaN NaN 319120 2009-12-31 NaN 24645 H2012337 BLDCUL NaN blood ... enterococcus ATEI teicoplanin NaN sensitive NaN NaN 319121 2009-12-31 NaN 24645 H2012337 BLDCUL NaN blood ... enterococcus AVAN vancomycin NaN sensitive NaN NaN [319122 rows x 15 columns] Columns: date_received object date_outcome float64 patient_id int64 laboratory_number object specimen_code object specimen_name float64 specimen_description object microorganism_code object microorganism_name object antimicrobial_code object antimicrobial_name object sensitivity_method float64 sensitivity object mic float64 reported float64 dtype: object Unique: microorganism_code 67 antimicrobial_code 58 specimen_code 22 laboratory_number 34816 patient_id 24646 dtype: int64 .. GENERATED FROM PYTHON SOURCE LINES 65-85 Computing SARI -------------- The Single Antimicrobial Resistance Index or ``SARI`` describes the proportion of resistant isolates for a given set of susceptibility tests. It provides a value within the range [0, 1] where values close to one indicate high resistance. It is agnostic to pathogen, antibiotic and/or time. The variables ``R``, ``I`` and ``S`` represent the number of susceptibility tests with Resistant, Intermediate and Susceptible outcomes respectively. The definition might vary slightly since the intermediate category is not always considered. For more information see: :py:mod:`pyamr.core.sari.SARI` For more examples see: - :ref:`sphx_glr__examples_tutorial_indexes_plot_core_a_sari.py` - :ref:`sphx_glr__examples_indexes_plot_sari_a_antibiogram.py` - :ref:`sphx_glr__examples_indexes_plot_sari_b_clustermap.py` - :ref:`sphx_glr__examples_indexes_plot_sari_c_relmap.py` .. GENERATED FROM PYTHON SOURCE LINES 86-141 .. code-block:: default :lineno-start: 87 # ------------------------------------------- # Compute SARI # ------------------------------------------- # Libraries from pyamr.core.sari import SARI # Create sari instance sari = SARI(groupby=['specimen_code', 'microorganism_name', 'antimicrobial_name', 'sensitivity']) # Compute SARI overall sari_overall = sari.compute(data, return_frequencies=True) # Show print("SARI (overall):") print(sari_overall) # ------------ # Plot Heatmap # ------------ # Filter matrix = sari_overall.copy(deep=True) matrix = matrix.reset_index() matrix = matrix[matrix.freq > 100] matrix = matrix[matrix.specimen_code.isin(['BLDCUL'])] # Pivot table matrix = pd.pivot_table(matrix, index='microorganism_name', columns='antimicrobial_name', values='sari') # Create figure f, ax = plt.subplots(1, 1, figsize=(10, 4)) # Create colormap cmap = sns.color_palette("Reds", desat=0.5, n_colors=10) # Plot ax = sns.heatmap(data=matrix*100, annot=True, fmt=".0f", annot_kws={'fontsize': 'small'}, cmap=cmap, linewidth=0.5, vmin=0, vmax=100, ax=ax, xticklabels=1, yticklabels=1) # Add title plt.suptitle("Antibiogram", fontsize='xx-large') # Tight layout plt.tight_layout() plt.subplots_adjust(right=1.05) .. image-sg:: /_examples/tutorial/guide/images/sphx_glr_plot_step_01_001.png :alt: Antibiogram :srcset: /_examples/tutorial/guide/images/sphx_glr_plot_step_01_001.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out .. code-block:: none SARI (overall): intermediate resistant sensitive freq sari specimen_code microorganism_name antimicrobial_name BFLCUL anaerobes metronidazole 0.0 0.0 1.0 1.0 0.000000 bacillus ciprofloxacin 0.0 0.0 1.0 1.0 0.000000 clindamycin 0.0 3.0 1.0 4.0 0.750000 erythromycin 0.0 1.0 3.0 4.0 0.250000 fusidic acid 0.0 3.0 1.0 4.0 0.750000 ... ... ... ... ... ... XINCUL streptococcus beta-haemolytic group b cephalexin 0.0 1.0 0.0 1.0 1.000000 clindamycin 0.0 1.0 8.0 9.0 0.111111 erythromycin 0.0 1.0 8.0 9.0 0.111111 penicillin 0.0 0.0 9.0 9.0 0.000000 tetracycline 0.0 8.0 1.0 9.0 0.888889 [4491 rows x 5 columns] .. GENERATED FROM PYTHON SOURCE LINES 142-146 Computing MARI -------------- .. warning:: Pending... similar to ``SARI``. .. GENERATED FROM PYTHON SOURCE LINES 149-189 Computing ASAI -------------- The antimicrobial spectrum of activity refers to the range of microbe species that are susceptible to these agents and therefore can be treated. In general, antimicrobial agents are classified into broad, intermediate or narrow spectrum. Broad spectrum antimicrobials are active against both Gram-positive and Gram-negative bacteria. In contrast, narrow spectrum antimicrobials have limited activity and are effective only against particular species of bacteria. While these profiles appeared in the mid-1950s, little effort has been made to define them. Furthermore, such ambiguous labels are overused for different and even contradictory purposes. In order to compute the antimicrobial spectrum of activity index or ``ASAI``, it is necessary to previously obtain the overall resistance (SARI) for all the microbe-antimicrobial pairs. Furthermore, by following the criteria used in the narrow-broad approach, these pairs were grouped into Gram-positive and Gram-negative. Briefly, the weighted proportion of species to which the antimicrobial is effective is computed for each genus. These are later added up and normalized by the number of genera tested. An antimicrobial is considered effective to treat a particular species when the corresponding resistance index (SARI) is lower than a given threshold. For more information see: :py:mod:`pyamr.core.asai.ASAI` For more examples see: - :ref:`sphx_glr__examples_indexes_plot_asai_a_gramtype.py` - :ref:`sphx_glr__examples_indexes_plot_asai_b_multiple.py` In order to compute ``ASAI``, we need to have the following columns present in our dataset: ``antimicrobial``, ``microorganism_genus``, ``microorganism_species`` and ``resistance``. Moreover, in this example we will compute the ASAI for each ``gram_stain`` category independently so we will need the microorganism gram stain information too. This information is available in the registries: :py:mod:`pyamr.datasets.registries` Lets include all this information using the ``MicroorganismRegistry``. .. GENERATED FROM PYTHON SOURCE LINES 190-216 .. code-block:: default :lineno-start: 191 # ------------------------------ # Include gram stain # ------------------------------ # Libraries from pyamr.datasets.registries import MicroorganismRegistry # Load registry mreg = MicroorganismRegistry() # Format sari dataframe dataframe = sari_overall.copy(deep=True) dataframe = dataframe.reset_index() # Create genus and species dataframe[['genus', 'species']] = \ dataframe.microorganism_name \ .str.capitalize() \ .str.split(expand=True, n=1) # Combine with registry information dataframe = mreg.combine(dataframe, on='microorganism_name') # Fill missing gram stain dataframe.gram_stain = dataframe.gram_stain.fillna('u') .. GENERATED FROM PYTHON SOURCE LINES 217-220 Now that we have the ``genus``, ``species`` and ``gram_stain`` information, lets compute ``ASAI``. .. GENERATED FROM PYTHON SOURCE LINES 221-254 .. code-block:: default :lineno-start: 222 # ------------------------------------------- # Compute ASAI # ------------------------------------------- # Import specific libraries from pyamr.core.asai import ASAI # Create asai instance asai = ASAI(column_genus='genus', column_specie='species', column_resistance='sari', column_frequency='freq') # Compute scores = asai.compute(dataframe, groupby=['specimen_code', 'antimicrobial_name', 'gram_stain'], weights='uniform', threshold=0.5, min_freq=0) # Stack scores = scores.unstack() # Filter and drop index. scores = scores.filter(like='URICUL', axis=0) scores.index = scores.index.droplevel() # Show print("\nASAI (overall):") print(scores) .. rst-class:: sphx-glr-script-out .. code-block:: none c:\users\kelda\desktop\repositories\github\pyamr\main\pyamr\core\asai.py:572: UserWarning: Extreme resistances [0, 1] were found in the DataFrame. These rows should be reviewed since these resistances might correspond to pairs with low number of records. c:\users\kelda\desktop\repositories\github\pyamr\main\pyamr\core\asai.py:583: UserWarning: There are NULL values in columns that are required. These rows will be ignored to safely compute ASAI. Please review the DataFrame and address this inconsistencies. See below for more information: specimen_code 0 antimicrobial_name 0 gram_stain 0 GENUS 0 SPECIE 2414 RESISTANCE 0 ASAI (overall): N_GENUS N_SPECIE ASAI_SCORE gram_stain n p u n p u n p u antimicrobial_name amikacin 5.0 NaN NaN 5.0 NaN NaN 0.800000 NaN NaN amoxycillin 2.0 2.0 NaN 2.0 7.0 NaN 0.500000 0.833333 NaN amp c markers 4.0 NaN NaN 4.0 NaN NaN 0.250000 NaN NaN augmentin 5.0 2.0 NaN 5.0 7.0 NaN 0.200000 1.000000 NaN aztreonam 3.0 NaN NaN 3.0 NaN NaN 0.666667 NaN NaN cefotaxime 5.0 NaN NaN 5.0 NaN NaN 0.200000 NaN NaN cefoxitin 5.0 NaN NaN 5.0 NaN NaN 0.400000 NaN NaN cefpodoxime 5.0 2.0 NaN 5.0 5.0 NaN 0.400000 0.833333 NaN ceftazidime 5.0 NaN NaN 5.0 NaN NaN 0.600000 NaN NaN cefuroxime 5.0 NaN NaN 5.0 NaN NaN 0.000000 NaN NaN cephalexin 5.0 2.0 NaN 5.0 7.0 NaN 0.200000 0.875000 NaN ciprofloxacin 6.0 2.0 NaN 6.0 7.0 NaN 0.333333 0.875000 NaN clindamycin NaN 2.0 NaN NaN 4.0 NaN NaN 1.000000 NaN colistin sulphate 5.0 NaN NaN 5.0 NaN NaN 0.800000 NaN NaN cotrimoxazole 3.0 NaN NaN 3.0 NaN NaN 0.333333 NaN NaN ertapenem 3.0 NaN NaN 3.0 NaN NaN 0.666667 NaN NaN erythromycin NaN 2.0 NaN NaN 6.0 NaN NaN 0.833333 NaN esbl markers 5.0 NaN NaN 5.0 NaN NaN 0.200000 NaN NaN flucloxacillin 1.0 1.0 NaN 1.0 3.0 NaN 0.000000 1.000000 NaN fusidic acid NaN 1.0 NaN NaN 3.0 NaN NaN 0.666667 NaN gentamicin 5.0 1.0 NaN 5.0 3.0 NaN 0.800000 1.000000 NaN imipenem 5.0 NaN NaN 5.0 NaN NaN 0.600000 NaN NaN linezolid NaN 1.0 NaN NaN 3.0 NaN NaN 1.000000 NaN mecillinam 5.0 NaN NaN 5.0 NaN NaN 0.400000 NaN NaN meropenem 5.0 NaN NaN 5.0 NaN NaN 0.600000 NaN NaN mls markers NaN 1.0 NaN NaN 3.0 NaN NaN 0.333333 NaN mupirocin NaN 1.0 NaN NaN 2.0 NaN NaN 1.000000 NaN naladixic acid 1.0 NaN NaN 1.0 NaN NaN 1.000000 NaN NaN nitrofurantoin 5.0 2.0 NaN 5.0 7.0 NaN 0.200000 1.000000 NaN novobiocin 1.0 1.0 NaN 1.0 3.0 NaN 0.000000 0.666667 NaN penicillin 1.0 2.0 NaN 1.0 6.0 NaN 0.000000 0.500000 NaN rifampicin NaN 1.0 NaN NaN 3.0 NaN NaN 1.000000 NaN sulphamethoxazole 2.0 NaN NaN 2.0 NaN NaN 0.500000 NaN NaN tazocin 5.0 NaN NaN 5.0 NaN NaN 0.800000 NaN NaN teicoplanin NaN 2.0 NaN NaN 7.0 NaN NaN 1.000000 NaN temocillin 3.0 NaN NaN 3.0 NaN NaN 0.666667 NaN NaN tetracycline 1.0 2.0 NaN 1.0 6.0 NaN 1.000000 0.833333 NaN timentin 4.0 NaN NaN 4.0 NaN NaN 0.750000 NaN NaN tobramycin 5.0 NaN NaN 5.0 NaN NaN 0.600000 NaN NaN trimethoprim 5.0 2.0 NaN 5.0 7.0 NaN 0.200000 1.000000 NaN vancomycin NaN 2.0 NaN NaN 7.0 NaN NaN 1.000000 NaN .. GENERATED FROM PYTHON SOURCE LINES 255-259 This is the information obtained where the columns n, p, and u stand for gram-positive, gram-negative and unknown respectively. Similarly, N_GENUS and N_SPECIE indicates the number of genus and species for the specific antimicrobial. .. GENERATED FROM PYTHON SOURCE LINES 259-261 .. code-block:: default :lineno-start: 259 scores.head(10) .. raw:: html
N_GENUS N_SPECIE ASAI_SCORE
gram_stain n p u n p u n p u
antimicrobial_name
amikacin 5.0 NaN NaN 5.0 NaN NaN 0.800000 NaN NaN
amoxycillin 2.0 2.0 NaN 2.0 7.0 NaN 0.500000 0.833333 NaN
amp c markers 4.0 NaN NaN 4.0 NaN NaN 0.250000 NaN NaN
augmentin 5.0 2.0 NaN 5.0 7.0 NaN 0.200000 1.000000 NaN
aztreonam 3.0 NaN NaN 3.0 NaN NaN 0.666667 NaN NaN
cefotaxime 5.0 NaN NaN 5.0 NaN NaN 0.200000 NaN NaN
cefoxitin 5.0 NaN NaN 5.0 NaN NaN 0.400000 NaN NaN
cefpodoxime 5.0 2.0 NaN 5.0 5.0 NaN 0.400000 0.833333 NaN
ceftazidime 5.0 NaN NaN 5.0 NaN NaN 0.600000 NaN NaN
cefuroxime 5.0 NaN NaN 5.0 NaN NaN 0.000000 NaN NaN


.. GENERATED FROM PYTHON SOURCE LINES 262-263 Lets plot it now! .. GENERATED FROM PYTHON SOURCE LINES 264-332 .. code-block:: default :lineno-start: 265 # --------------------------------------------------------------- # Plot # --------------------------------------------------------------- # .. note: In order to sort the scores we need to compute metrics # that combine the different subcategories (e.g. gram-negative # and gram-positive). Two possible options are: (i) use the # gmean or (ii) the width. # Libraries from pyamr.utils.plot import scalar_colormap # Measures scores['width'] = np.abs(scores['ASAI_SCORE'].sum(axis=1)) # Variables to plot. x = scores.index.values y_n = scores['ASAI_SCORE']['n'].values y_p = scores['ASAI_SCORE']['p'].values y_u = scores['ASAI_SCORE']['u'].values # Constants colormap_p = scalar_colormap(y_p, cmap='Blues', vmin=-0.1, vmax=1.1) colormap_n = scalar_colormap(y_n, cmap='Reds', vmin=-0.1, vmax=1.1) colormap_u = scalar_colormap(y_u, cmap='Greens', vmin=-0.1, vmax=1.1) # ---------- # Example # ---------- # This example shows an stacked figure using more than two categories. # For instance, it uses gram-positive, gram-negative and gram-unknown. # All the indexes go within the range [0,1]. # Create the figure f, axes = plt.subplots(1, 3, figsize=(7, 9)) # Plot each category sns.barplot(x=y_p, y=x, palette=colormap_p, ax=axes[0], orient='h', saturation=0.5, label='Gram-positive') sns.barplot(x=y_n, y=x, palette=colormap_n, ax=axes[1], orient='h', saturation=0.5, label='Gram-negative') sns.barplot(x=y_u, y=x, palette=colormap_u, ax=axes[2], orient='h', saturation=0.5, label='Gram-unknown') # Configure sns.despine(bottom=True) # Format figure plt.subplots_adjust(wspace=0.0, hspace=0.0) # Remove yticks axes[1].set_yticks([]) axes[2].set_yticks([]) # Set title axes[0].set_title('Gram-positive') axes[1].set_title('Gram-negative') axes[2].set_title('Gram-unknown') # Set x-axis axes[0].set_xlim([0, 1.1]) axes[1].set_xlim([0, 1.1]) axes[2].set_xlim([0, 1.1]) # Adjust plt.tight_layout() .. image-sg:: /_examples/tutorial/guide/images/sphx_glr_plot_step_01_002.png :alt: Gram-positive, Gram-negative, Gram-unknown :srcset: /_examples/tutorial/guide/images/sphx_glr_plot_step_01_002.png :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 333-359 Computing SART -------------- The single antimicrobial resistance trend or ``SART`` measures the ratio of change per time unit (e.g. monthly or yearly). To compute this metric, it is necessary to generate a resistance time series from the susceptibility test data. This is often achieved by computing the SARI on consecutive or overlapping partitions of the data. Then, the trend can be extracted using for example a linear model where the slope, which is represented by a value within the range [-1, 1], indicates the ratio of change. For more information see: :py:mod:`pyamr.core.sart.SART` For more examples see: - :ref:`sphx_glr__examples_tutorial_indexes_plot_core_d_sart.py` - :ref:`sphx_glr__examples_indexes_plot_sart_a_basic.py` .. note:: Be cautious when computing the ``SART`` index using a small dataset (e.g. a low number of susceptibility tests records) since it is very likely that the statistics produced (e.g. kurtosis or skewness) will be ill defined. Also remember to check stationarity if using ARIMA. Since it is necessary to have a decent amount of records to be able to compute the trends accurately, lets see which tuples have more number of samples. .. GENERATED FROM PYTHON SOURCE LINES 360-385 .. code-block:: default :lineno-start: 361 # ------------------------------------------- # Show top combinations # ------------------------------------------- from pyamr.core.sari import SARI # Create SARI instance sar = SARI(groupby=['specimen_code', 'microorganism_code', 'antimicrobial_code', 'sensitivity']) # Compute SARI overall sari_overall = sar.compute(data, return_frequencies=True) # Compute top tuples top = sari_overall \ .sort_values(by='freq', ascending=False) \ .head(10) # Show print("\nTop by Frequency:") print(top) .. rst-class:: sphx-glr-script-out .. code-block:: none Top by Frequency: intermediate resistant sensitive freq sari specimen_code microorganism_code antimicrobial_code URICUL ECOL A_CEFPODOX 0.0 595.0 8582.0 9177.0 0.064836 ANIT 0.0 347.0 8826.0 9173.0 0.037828 ACELX 0.0 803.0 8370.0 9173.0 0.087540 ATRI 0.0 3231.0 5941.0 9172.0 0.352268 ACIP 0.0 1259.0 7913.0 9172.0 0.137266 AAUG 0.0 602.0 8561.0 9163.0 0.065699 WOUCUL SAUR AFUS 0.0 613.0 3631.0 4244.0 0.144439 APEN 0.0 3677.0 566.0 4243.0 0.866604 AERY 0.0 1186.0 3056.0 4242.0 0.279585 AMET 0.0 869.0 3372.0 4241.0 0.204905 .. GENERATED FROM PYTHON SOURCE LINES 386-387 Let's choose the tuples were are interested in. .. GENERATED FROM PYTHON SOURCE LINES 387-410 .. code-block:: default :lineno-start: 388 # ------------------------------------------- # Filter data # ------------------------------------------- # Define spec, orgs, abxs of interest spec = ['URICUL'] orgs = ['ECOL'] abxs = ['ACELX', 'ACIP', 'AAMPC', 'ATRI', 'AAUG', 'AMER', 'ANIT', 'AAMI', 'ACTX', 'ATAZ', 'AGEN', 'AERT', 'ACAZ', 'AMEC', 'ACXT'] # Create auxiliary DataFrame aux = data.copy(deep=True) \ # Filter idxs_spec = data.specimen_code.isin(spec) idxs_orgs = data.microorganism_code.isin(orgs) idxs_abxs = data.antimicrobial_code.isin(abxs) # Filter aux = aux[idxs_spec & idxs_orgs & idxs_abxs] .. GENERATED FROM PYTHON SOURCE LINES 411-412 Now, lets compute the resistance trend. .. GENERATED FROM PYTHON SOURCE LINES 413-438 .. code-block:: default :lineno-start: 414 # Libraries import warnings # Import specific libraries from pyamr.core.sart import SART # Variables shift, period = '10D', '180D' # Create instance sar = SART(column_specimen='specimen_code', column_microorganism='microorganism_code', column_antimicrobial='antimicrobial_code', column_date='date_received', column_outcome='sensitivity', column_resistance='sari') with warnings.catch_warnings(): warnings.simplefilter('ignore') # Compute resistance trends table, objs = sar.compute(aux, shift=shift, period=period, return_objects=True) .. rst-class:: sphx-glr-script-out .. code-block:: none 1/15. Computing... ('URICUL', 'ECOL', 'AAMI') 2/15. Computing... ('URICUL', 'ECOL', 'AAMPC') 3/15. Computing... ('URICUL', 'ECOL', 'AAUG') 4/15. Computing... ('URICUL', 'ECOL', 'ACAZ') 5/15. Computing... ('URICUL', 'ECOL', 'ACELX') 6/15. Computing... ('URICUL', 'ECOL', 'ACIP') 7/15. Computing... ('URICUL', 'ECOL', 'ACTX') 8/15. Computing... ('URICUL', 'ECOL', 'ACXT') 9/15. Computing... ('URICUL', 'ECOL', 'AERT') 10/15. Computing... ('URICUL', 'ECOL', 'AGEN') 11/15. Computing... ('URICUL', 'ECOL', 'AMEC') 12/15. Computing... ('URICUL', 'ECOL', 'AMER') 13/15. Computing... ('URICUL', 'ECOL', 'ANIT') 14/15. Computing... ('URICUL', 'ECOL', 'ATAZ') 15/15. Computing... ('URICUL', 'ECOL', 'ATRI') .. GENERATED FROM PYTHON SOURCE LINES 439-440 Lets see the results(note it is transposed!) .. GENERATED FROM PYTHON SOURCE LINES 441-453 .. code-block:: default :lineno-start: 442 # Configure pandas pd.set_option( 'display.max_colwidth', 20, 'display.width', 1000 ) # Show #print("Results:") #print(table.T) table.head(4).T .. raw:: html
specimen_code URICUL
microorganism_code ECOL
antimicrobial_code AAMI AAMPC AAUG ACAZ
wls-rsquared 0.557029 0.12798 0.906452 0.004545
wls-rsquared_adj 0.544373 0.09791 0.903779 -0.023896
wls-fvalue 44.012024 4.256121 339.140633 0.159818
wls-fprob 0.0 0.048164 0.0 0.691754
wls-aic inf inf inf inf
wls-bic inf inf inf inf
wls-llf -inf -inf -inf -inf
wls-mse_model 0.745856 4.978205 33.299393 0.2007
wls-mse_resid 0.016947 1.169658 0.098188 1.255805
wls-mse_total 0.037194 1.296609 1.020443 1.226496
wls-const_coef 0.031283 68.761679 1.544961 65.712841
wls-const_std 0.093007 0.698295 0.234858 0.80353
wls-const_tvalue 0.336351 98.470788 6.578289 81.780194
wls-const_tprob 0.738614 0.0 0.0 0.0
wls-const_cil -0.157532 67.333505 1.068175 64.081588
wls-const_ciu 0.220098 70.189854 2.021747 67.344094
wls-x1_coef 0.024239 0.072052 0.167941 -0.012606
wls-x1_std 0.003654 0.034925 0.009119 0.031532
wls-x1_tvalue 6.634156 2.063037 18.415771 -0.399772
wls-x1_tprob 0.0 0.048164 0.0 0.691754
wls-x1_cil 0.016822 0.000622 0.149427 -0.076619
wls-x1_ciu 0.031656 0.143482 0.186454 0.051408
wls-s_dw 0.741 1.091 0.176 0.445
wls-s_jb_value 0.509 0.638 2.336 0.239
wls-s_jb_prob 0.775 0.727 0.311 0.887
wls-s_skew 0.21 -0.17 0.316 -0.051
wls-s_kurtosis 2.608 2.385 1.944 2.62
wls-s_omnibus_value 0.39 0.518 5.037 0.05
wls-s_omnibus_prob 0.823 0.772 0.081 0.975
wls-m_dw 0.736178 0.537678 0.043909 0.188735
wls-m_jb_value 26.465944 457.685847 27.729537 10.593247
wls-m_jb_prob 0.000002 0.0 0.000001 0.005008
wls-m_skew 1.61218 4.04353 1.89606 1.267125
wls-m_kurtosis 5.602039 19.998144 4.899094 3.66998
wls-m_nm_value 19.984589 59.422218 21.39435 10.974889
wls-m_nm_prob 0.000046 0.0 0.000023 0.004138
wls-m_ks_value 0.405236 0.149246 0.366502 0.365003
wls-m_ks_prob 0.000005 0.451309 0.000058 0.000063
wls-m_shp_value 0.845794 0.486878 0.565564 0.844264
wls-m_shp_prob 0.000126 0.0 0.0 0.000116
wls-m_ad_value 1.637801 5.197208 7.445695 2.187059
wls-m_ad_nnorm False False False False
wls-pearson 0.548657 -0.482852 -0.197034 -0.816642
wls-missing raise raise raise raise
wls-exog [[1.0, 0.0], [1.... [[1.0, 0.0], [1.... [[1.0, 0.0], [1.... [[1.0, 0.0], [1....
wls-endog [0.0, 0.0, 0.0, ... [100.0, 77.77777... [13.513513513513... [75.0, 73.529411...
wls-trend c c c c
wls-weights [0.0, 0.00281585... [0.0, 0.03706907... [0.0, 0.00124501... [0.0, 0.00278805...
wls-W <pyamr.metrics.w... <pyamr.metrics.w... <pyamr.metrics.w... <pyamr.metrics.w...
wls-model <statsmodels.reg... <statsmodels.reg... <statsmodels.reg... <statsmodels.reg...
wls-id WLS(c,Sig(N, N)) WLS(c,Sig(N, N)) WLS(c,Sig(N, N)) WLS(c,Sig(N, N))


.. GENERATED FROM PYTHON SOURCE LINES 454-455 Lets visualise the first entry .. GENERATED FROM PYTHON SOURCE LINES 456-505 .. code-block:: default :lineno-start: 457 # Display # This example shows how to make predictions using the wrapper and how # to plot the result in data. In addition, it compares the intervals # provided by get_prediction (confidence intervals) and the intervals # provided by wls_prediction_std (prediction intervals). # Variables name, obj = objs[2] # AAUG # Series series = obj.as_series() # Variables. start, end = None, 50 # Get x and y x = series['wls-exog'][:,1] y = series['wls-endog'] # Compute predictions (exogenous?). It returns a 2D array # where the rows contain the time (t), the mean, the lower # and upper confidence (or prediction?) interval. preds = obj.get_prediction(start=start, end=end) # Create figure fig, ax = plt.subplots(1, 1, figsize=(11, 5)) # Plotting confidence intervals # ----------------------------- # Plot truth values. ax.plot(x, y, color='#A6CEE3', alpha=0.5, marker='o', markeredgecolor='k', markeredgewidth=0.5, markersize=5, linewidth=0.75, label='Observed') # Plot forecasted values. ax.plot(preds[0, :], preds[1, :], color='#FF0000', alpha=1.00, linewidth=2.0, label=obj._identifier(short=True)) # Plot the confidence intervals. ax.fill_between(preds[0, :], preds[2, :], preds[3, :], color='r', alpha=0.1) # Legend plt.legend() plt.title(name) .. image-sg:: /_examples/tutorial/guide/images/sphx_glr_plot_step_01_003.png :alt: ('URICUL', 'ECOL', 'AAUG') :srcset: /_examples/tutorial/guide/images/sphx_glr_plot_step_01_003.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out .. code-block:: none Text(0.5, 1.0, "('URICUL', 'ECOL', 'AAUG')") .. GENERATED FROM PYTHON SOURCE LINES 506-507 Lets see the summary .. GENERATED FROM PYTHON SOURCE LINES 507-512 .. code-block:: default :lineno-start: 508 # Summary print("Name: %s\n" % str(name)) print(obj.as_summary()) .. rst-class:: sphx-glr-script-out .. code-block:: none Name: ('URICUL', 'ECOL', 'AAUG') WLS Regression Results ============================================================================== Dep. Variable: y R-squared: 0.906 Model: WLS Adj. R-squared: 0.904 Method: Least Squares F-statistic: 339.1 Date: Thu, 15 Jun 2023 Prob (F-statistic): 1.38e-19 Time: 18:15:41 Log-Likelihood: -inf No. Observations: 37 AIC: inf Df Residuals: 35 BIC: inf Df Model: 1 Covariance Type: nonrobust ============================================================================== coef std err t P>|t| [0.025 0.975] ------------------------------------------------------------------------------ const 1.5450 0.235 6.578 0.000 1.068 2.022 x1 0.1679 0.009 18.416 0.000 0.149 0.186 ============================================================================== Omnibus: 5.037 Durbin-Watson: 0.176 Prob(Omnibus): 0.081 Jarque-Bera (JB): 2.336 Skew: 0.316 Prob(JB): 0.311 Kurtosis: 1.944 Cond. No. 91.7 Normal (N): 21.394 Prob(N): 0.000 ============================================================================== .. GENERATED FROM PYTHON SOURCE LINES 513-514 Lets display the information as a table graph for all tuples .. GENERATED FROM PYTHON SOURCE LINES 515-642 .. code-block:: default :lineno-start: 516 # Libraries from pyamr.graphics.table_graph import _DEFAULT_CONFIGURATION from pyamr.graphics.table_graph import vlinebgplot # Configuration for display info = _DEFAULT_CONFIGURATION # Lets define one as an example. info['freq'] = { 'cmap': 'Blues', 'title': 'Freq', 'xticks': [0, 8000], 'kwargs': { 's': 80, 'vmin': 0 } } # .. note: It is important to ensure that the column names # match with the keys of the previously loaded # info configuration so that it is used. # Rename columns rename = { 'wls-x1_coef': 'sart_m', 'wls-const_coef': 'offset', 'wls-rsquared': 'r2', 'wls-rsquared_adj': 'r2_adj', 'wls-m_skew': 'skew', 'wls-m_kurtosis': 'kurtosis', 'wls-m_jb_prob': 'jb', 'wls-m_dw': 'dw', 'wls-const_tprob': 'ptm', 'wls-x1_tprob': 'ptn', 'wls-pearson': 'pearson', 'freq': 'freq', } # ---------------- # Combine with SARI # Format combined DataFrame comb = table.join(sari_overall) comb.index = comb.index.map('_'.join) comb = comb.reset_index() comb = comb.rename(columns=rename) # Add new columns comb['sart_y'] = comb.sart_m * 12 # Yearly trend comb['sari_pct'] = comb.sari * 100 # SARI percent # Sort by trend comb = comb.sort_values(by='sart_y', ascending=False) # Select only numeric columns # data = comb.select_dtypes(include=np.number) data = comb[[ 'index', 'sart_m', #'sart_y', 'sari_pct', 'r2', #'r2_adj', 'skew', 'kurtosis', 'jb', 'dw', 'ptm', #'ptn', 'pearson', 'freq' ]] # Show DataFrame #print("\nResults:") #print(data) # Create pair grid g = sns.PairGrid(data, x_vars=data.columns[1:], y_vars=["index"], height=3, aspect=.45) # Set common features g.set(xlabel='', ylabel='') # Plot strips and format axes (skipping index) for ax, c in zip(g.axes.flat, data.columns[1:]): # Get information d = info[c] if c in info else {} # .. note: We need to use scatter plot if we want to # assign colors to the markers according to # their value. # Using scatter plot sns.scatterplot(data=data, x=c, y='index', s=100, ax=ax, linewidth=0.75, edgecolor='gray', c=data[c], cmap=d.get('cmap', None), norm=d.get('norm', None)) # Plot vertical lines for e in d.get('vline', []): vlinebgplot(ax, top=data.shape[0], **e) # Configure axes ax.set(title=d.get('title', c), xlim=d.get('xlim', None), xticks=d.get('xticks', []), xlabel='', ylabel='') ax.tick_params(axis='y', which='both', length=0) ax.xaxis.grid(False) ax.yaxis.grid(visible=True, which='major', color='gray', linestyle='-', linewidth=0.35) # Despine sns.despine(left=True, bottom=True) # Adjust layout plt.tight_layout() plt.show() #% # Lets see the data plotted data.round(decimals=3) .. image-sg:: /_examples/tutorial/guide/images/sphx_glr_plot_step_01_004.png :alt: SART (m), SARI (%), R2, Skew, Kurtosis, Prob(JB), DW, P>|t| m, Pearson, Freq :srcset: /_examples/tutorial/guide/images/sphx_glr_plot_step_01_004.png :class: sphx-glr-single-img .. raw:: html
index sart_m sari_pct r2 skew kurtosis jb dw ptm pearson freq
7 URICUL_ECOL_ACXT 0.385 27.961 0.872 -0.902 4.451 0.016 0.322 0.000 0.801 726.0
10 URICUL_ECOL_AMEC 0.364 6.923 0.925 0.292 3.163 0.753 0.247 0.000 0.905 390.0
2 URICUL_ECOL_AAUG 0.168 6.570 0.906 1.896 4.899 0.000 0.044 0.000 -0.197 9163.0
1 URICUL_ECOL_AAMPC 0.072 70.079 0.128 4.044 19.998 0.000 0.538 0.000 -0.483 254.0
9 URICUL_ECOL_AGEN 0.042 35.586 0.028 1.569 4.015 0.000 0.042 0.000 -0.726 725.0
0 URICUL_ECOL_AAMI 0.024 0.693 0.557 1.612 5.602 0.000 0.736 0.739 0.549 722.0
11 URICUL_ECOL_AMER 0.020 0.414 0.648 0.021 2.439 0.784 0.411 0.089 0.902 724.0
3 URICUL_ECOL_ACAZ -0.013 65.522 0.005 1.267 3.670 0.005 0.189 0.000 -0.817 728.0
4 URICUL_ECOL_ACELX -0.015 8.754 0.112 2.012 5.358 0.000 0.052 0.000 -0.664 9173.0
6 URICUL_ECOL_ACTX -0.032 66.803 0.030 2.046 7.029 0.000 0.145 0.000 -0.746 732.0
5 URICUL_ECOL_ACIP -0.075 13.727 0.669 2.075 5.565 0.000 0.071 0.000 -0.710 9172.0
14 URICUL_ECOL_ATRI -0.093 35.227 0.600 1.751 4.933 0.000 0.089 0.000 -0.893 9172.0
12 URICUL_ECOL_ANIT -0.094 3.783 0.907 0.369 4.881 0.043 1.134 0.000 -0.893 9173.0
13 URICUL_ECOL_ATAZ -0.190 27.885 0.413 0.307 2.277 0.500 0.186 0.000 -0.911 728.0
8 URICUL_ECOL_AERT -0.472 4.569 0.798 -1.436 3.976 0.001 0.078 0.000 -0.483 197.0


.. GENERATED FROM PYTHON SOURCE LINES 643-647 Computing ACSI -------------- .. warning:: Pending... .. GENERATED FROM PYTHON SOURCE LINES 649-653 Computing DRI -------------- .. warning:: Pending... .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 6.004 seconds) .. _sphx_glr_download__examples_tutorial_guide_plot_step_01.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_step_01.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_step_01.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_