.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "_examples\indexes\plot_sart_a_basic.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code .. rst-class:: sphx-glr-example-title .. _sphx_glr__examples_indexes_plot_sart_a_basic.py: ``SART`` - Trend as slope of ``WLS`` ------------------------------------ .. todo: Explain .. note: The slope of the fitted straight line is what we denote as SART (Single Antibiotic Resistance Trend). Need to find the code that computes and plots the trends as in the PhD thesis. .. GENERATED FROM PYTHON SOURCE LINES 14-127 .. image-sg:: /_examples/indexes/images/sphx_glr_plot_sart_a_basic_001.png :alt: plot sart a basic :srcset: /_examples/indexes/images/sphx_glr_plot_sart_a_basic_001.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out .. code-block:: none c:\users\kelda\desktop\repositories\virtualenvs\venv-py391-pyamr\lib\site-packages\statsmodels\regression\linear_model.py:807: RuntimeWarning: divide by zero encountered in log Series: wls-rsquared 0.5402 wls-rsquared_adj 0.5355 wls-fvalue 115.1527 wls-fprob 0.0 wls-aic inf wls-bic inf wls-llf -inf wls-mse_model 165533.2802 wls-mse_resid 1437.5111 wls-mse_total 3095.0441 wls-const_coef 263.575 wls-const_std 17.4154 wls-const_tvalue 15.1346 wls-const_tprob 0.0 wls-const_cil 229.0148 wls-const_ciu 298.1352 wls-x1_coef 2.5975 wls-x1_std 0.2421 wls-x1_tvalue 10.7309 wls-x1_tprob 0.0 wls-x1_cil 2.1171 wls-x1_ciu 3.0778 wls-s_dw 0.546 wls-s_jb_value 14.895 wls-s_jb_prob 0.0006 wls-s_skew 0.697 wls-s_kurtosis 4.278 wls-s_omnibus_value 12.662 wls-s_omnibus_prob 0.002 wls-m_dw 0.1707 wls-m_jb_value 4.7339 wls-m_jb_prob 0.0938 wls-m_skew -0.5009 wls-m_kurtosis 3.364 wls-m_nm_value 5.3656 wls-m_nm_prob 0.0684 wls-m_ks_value 0.5809 wls-m_ks_prob 0.0 wls-m_shp_value 0.9455 wls-m_shp_prob 0.0004 wls-m_ad_value 2.4183 wls-m_ad_nnorm False wls-missing raise wls-exog [[1.0, 0.0... wls-endog [38.780154... wls-trend c wls-weights [0.0328805... wls-W |t| [0.025 0.975] ------------------------------------------------------------------------------ const 263.5750 17.415 15.135 0.000 229.015 298.135 x1 2.5975 0.242 10.731 0.000 2.117 3.078 ============================================================================== Omnibus: 12.662 Durbin-Watson: 0.546 Prob(Omnibus): 0.002 Jarque-Bera (JB): 14.895 Skew: 0.697 Prob(JB): 0.000583 Kurtosis: 4.278 Cond. No. 231. Normal (N): 5.366 Prob(N): 0.068 ============================================================================== | .. code-block:: default :lineno-start: 14 # Import class. import sys import numpy as np import pandas as pd import matplotlib as mpl import matplotlib.pyplot as plt import statsmodels.api as sm import statsmodels.robust.norms as norms # import weights. from pyamr.datasets.load import make_timeseries from pyamr.core.regression.wls import WLSWrapper from pyamr.metrics.weights import SigmoidA # ---------------------------- # set basic configuration # ---------------------------- # Matplotlib options mpl.rc('legend', fontsize=6) mpl.rc('xtick', labelsize=6) mpl.rc('ytick', labelsize=6) # Set pandas configuration. pd.set_option('display.max_colwidth', 14) pd.set_option('display.width', 150) pd.set_option('display.precision', 4) # ---------------------------- # create data # ---------------------------- # Create timeseries data x, y, f = make_timeseries() # Create method to compute weights from frequencies W = SigmoidA(r=200, g=0.5, offset=0.0, scale=1.0) # Note that the function fit will call M.weights(weights) inside and will # store the M converter in the instance. Therefore, the code executed is # equivalent to with the only difference being that # the weight converter is not saved. wls = WLSWrapper(estimator=sm.WLS).fit( \ exog=x, endog=y, trend='c', weights=f, W=W, missing='raise') # Print series. print("\nSeries:") print(wls.as_series()) # Print regression line. print("\nRegression line:") print(wls.line(np.arange(10))) # Print summary. print("\nSummary:") print(wls.as_summary()) # ----------------- # Save & Load # ----------------- # File location #fname = '../../examples/saved/wls-sample.pickle' # Save #wls.save(fname=fname) # Load #wls = WLSWrapper().load(fname=fname) # ------------- # Example I # ------------- # This example shows how to make predictions using the wrapper and how # to plot the resultin data. In addition, it compares the intervales # provided by get_prediction (confidence intervals) and the intervals # provided by wls_prediction_std (prediction intervals). # # To Do: Implement methods to compute CI and PI (see regression). # Variables. start, end = None, 180 # Compute predictions (exogenous?). It returns a 2D array # where the rows contain the time (t), the mean, the lower # and upper confidence (or prediction?) interval. preds = wls.get_prediction(start=start, end=end) # Create figure fig, ax = plt.subplots(1, 1, figsize=(11,5)) # Plotting confidence intervals # ----------------------------- # Plot truth values. ax.plot(x, y, color='#A6CEE3', alpha=0.5, marker='o', markeredgecolor='k', markeredgewidth=0.5, markersize=5, linewidth=0.75, label='Observed') # Plot forecasted values. ax.plot(preds[0,:], preds[1, :], color='#FF0000', alpha=1.00, linewidth=2.0, label=wls._identifier(short=True)) # Plot the confidence intervals. ax.fill_between(preds[0, :], preds[2, :], preds[3, :], color='r', alpha=0.1) # Legend plt.legend() # Show plt.show() .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 0.108 seconds) .. _sphx_glr_download__examples_indexes_plot_sart_a_basic.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_sart_a_basic.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_sart_a_basic.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_