.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "_examples\indexes\plot_sari_a_antibiogram.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code .. rst-class:: sphx-glr-example-title .. _sphx_glr__examples_indexes_plot_sari_a_antibiogram.py: ``SARI`` - By specimen w/ ``sns.heatmap`` ------------------------------------------------ .. todo:: Explain... .. GENERATED FROM PYTHON SOURCE LINES 8-144 .. rst-class:: sphx-glr-horizontal * .. image-sg:: /_examples/indexes/images/sphx_glr_plot_sari_a_antibiogram_001.png :alt: Antibiogram (BLDCUL) :srcset: /_examples/indexes/images/sphx_glr_plot_sari_a_antibiogram_001.png :class: sphx-glr-multi-img * .. image-sg:: /_examples/indexes/images/sphx_glr_plot_sari_a_antibiogram_002.png :alt: Antibiogram (SPTCUL) :srcset: /_examples/indexes/images/sphx_glr_plot_sari_a_antibiogram_002.png :class: sphx-glr-multi-img * .. image-sg:: /_examples/indexes/images/sphx_glr_plot_sari_a_antibiogram_003.png :alt: Antibiogram (URICUL) :srcset: /_examples/indexes/images/sphx_glr_plot_sari_a_antibiogram_003.png :class: sphx-glr-multi-img * .. image-sg:: /_examples/indexes/images/sphx_glr_plot_sari_a_antibiogram_004.png :alt: Antibiogram (WOUCUL) :srcset: /_examples/indexes/images/sphx_glr_plot_sari_a_antibiogram_004.png :class: sphx-glr-multi-img * .. image-sg:: /_examples/indexes/images/sphx_glr_plot_sari_a_antibiogram_005.png :alt: Antibiogram (XINCUL) :srcset: /_examples/indexes/images/sphx_glr_plot_sari_a_antibiogram_005.png :class: sphx-glr-multi-img .. rst-class:: sphx-glr-script-out .. code-block:: none Data: date_received date_outcome patient_id laboratory_number specimen_code specimen_name specimen_description ... microorganism_name antimicrobial_code antimicrobial_name sensitivity_method sensitivity mic reported 0 2009-01-03 NaN 20091 X428501 BLDCUL NaN blood ... klebsiella AAMI amikacin NaN sensitive NaN NaN 1 2009-01-03 NaN 20091 X428501 BLDCUL NaN blood ... klebsiella AAMO amoxycillin NaN resistant NaN NaN 2 2009-01-03 NaN 20091 X428501 BLDCUL NaN blood ... klebsiella AAUG augmentin NaN sensitive NaN NaN 3 2009-01-03 NaN 20091 X428501 BLDCUL NaN blood ... klebsiella AAZT aztreonam NaN sensitive NaN NaN 4 2009-01-03 NaN 20091 X428501 BLDCUL NaN blood ... klebsiella ACAZ ceftazidime NaN sensitive NaN NaN ... ... ... ... ... ... ... ... ... ... ... ... ... ... .. ... 319117 2009-12-31 NaN 24645 H2012337 BLDCUL NaN blood ... enterococcus AAMO amoxycillin NaN sensitive NaN NaN 319118 2009-12-31 NaN 24645 H2012337 BLDCUL NaN blood ... enterococcus ALIN linezolid NaN sensitive NaN NaN 319119 2009-12-31 NaN 24645 H2012337 BLDCUL NaN blood ... enterococcus ASYN synercid NaN resistant NaN NaN 319120 2009-12-31 NaN 24645 H2012337 BLDCUL NaN blood ... enterococcus ATEI teicoplanin NaN sensitive NaN NaN 319121 2009-12-31 NaN 24645 H2012337 BLDCUL NaN blood ... enterococcus AVAN vancomycin NaN sensitive NaN NaN [319122 rows x 15 columns] Columns: Index(['date_received', 'date_outcome', 'patient_id', 'laboratory_number', 'specimen_code', 'specimen_name', 'specimen_description', 'microorganism_code', 'microorganism_name', 'antimicrobial_code', 'antimicrobial_name', 'sensitivity_method', 'sensitivity', 'mic', 'reported'], dtype='object') SARI (overall): intermediate resistant sensitive freq sari specimen_code microorganism_code antimicrobial_code BFLCUL AHS ACHL 0.0 0.0 1.0 1.0 0.0000 ACLI 0.0 0.0 2.0 2.0 0.0000 ACTX 0.0 0.0 1.0 1.0 0.0000 AERY 0.0 1.0 1.0 2.0 0.5000 APEN 0.0 0.0 2.0 2.0 0.0000 ... ... ... ... ... ... XINCUL SAUR ATEI 0.0 0.0 1365.0 1365.0 0.0000 ATET 0.0 67.0 1288.0 1355.0 0.0494 ATRI 0.0 145.0 1213.0 1358.0 0.1068 AVAN 0.0 0.0 1364.0 1364.0 0.0000 SMAL ACOT 0.0 0.0 8.0 8.0 0.0000 [4491 rows x 5 columns] Cultures: specimen_code URICUL 116627.0 WOUCUL 94918.0 XINCUL 21427.0 SPTCUL 21113.0 BLDCUL 20333.0 ENTCUL 13110.0 T&FCUL 8150.0 MRSCUL 7865.0 VAGCUL 7425.0 EYECUL 2839.0 GUMCUL 1634.0 FAECUL 1317.0 URECUL 802.0 TISCUL 474.0 BFLCUL 450.0 SEMCUL 290.0 NEOCUL 213.0 PDFCUL 68.0 CSFCUL 32.0 RGNS 20.0 FUNSTC 14.0 TBCUL 1.0 Name: freq, dtype: float64 | .. code-block:: default :lineno-start: 9 # Libraries import sys import numpy as np import pandas as pd import seaborn as sns import matplotlib as mpl import matplotlib.pyplot as plt # Import specific libraries from pyamr.core.sari import SARI from pyamr.core.freq import Frequency from pyamr.datasets.load import make_susceptibility # ------------------------- # Configuration # ------------------------- # Configure seaborn style (context=talk) sns.set(style="white") # Set matplotlib mpl.rcParams['xtick.labelsize'] = 9 mpl.rcParams['ytick.labelsize'] = 9 mpl.rcParams['axes.titlesize'] = 11 mpl.rcParams['legend.fontsize'] = 9 # Pandas configuration pd.set_option('display.max_colwidth', 40) pd.set_option('display.width', 300) pd.set_option('display.precision', 4) # Numpy configuration np.set_printoptions(precision=2) # ------------------------------------------- # Load data # ------------------------------------------- # Load data data = make_susceptibility() # Show print("\nData:") print(data) print("\nColumns:") print(data.columns) # ------------------------------------------- # Compute SARI # ------------------------------------------- # Libraries from pyamr.core.sari import SARI # Create sari instance sari = SARI(groupby=['specimen_code', 'microorganism_code', 'antimicrobial_code', 'sensitivity']) # Compute SARI overall sari_overall = sari.compute(data, return_frequencies=True) # Show print("SARI (overall):") print(sari_overall) # ------------------------------------------- # Plot # ------------------------------------------- # Reset sari_overall = sari_overall.reset_index() # Count records per specimen specimen_count = sari_overall \ .groupby('specimen_code').freq.sum() \ .sort_values(ascending=False) # Show print("Cultures:") print(specimen_count) # Filter sari_overall = sari_overall[sari_overall \ .specimen_code.isin( \ specimen_count.index.values[:5])] # Loop for specimen, df in sari_overall.groupby(by='specimen_code'): # ------------- # Create matrix # ------------- # Filter matrix = df.copy(deep=True) matrix = df.reset_index() #matrix = matrix[matrix.freq > 100] # Pivot table matrix = pd.pivot_table(matrix, index='microorganism_code', columns='antimicrobial_code', values='sari') # ------------ # Plot Heatmap # ------------ # Create figure f, ax = plt.subplots(1, 1, figsize=(10, 10)) # Create colormap cmap = sns.color_palette("Reds", desat=0.5, n_colors=10) # Specify cbar axes # cbar_ax = f.add_axes([.925, .3, .05, .3]) # Plot ax = sns.heatmap(data=matrix*100, annot=True, fmt=".0f", annot_kws={'fontsize': 7}, cmap=cmap, linewidth=0.5, vmin=0, vmax=100, ax=ax, #cbar_ax=cbar_ax, xticklabels=1, yticklabels=1) # Configure axes ax.set(aspect="equal") # Set rotation plt.yticks(rotation=0) # Add title plt.suptitle("Antibiogram (%s)" % specimen, fontsize=15) # Tight layout plt.tight_layout() # Show plt.show() .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 4.514 seconds) .. _sphx_glr_download__examples_indexes_plot_sari_a_antibiogram.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_sari_a_antibiogram.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_sari_a_antibiogram.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_