.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "_examples\indexes\plot_dri_b_mimic.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code .. rst-class:: sphx-glr-example-title .. _sphx_glr__examples_indexes_plot_dri_b_mimic.py: ``DRI`` - Example using ``MIMIC`` --------------------------------- In the field of healthcare, analyzing drug resistance in antimicrobial use is crucial for understanding and combating the growing problem of antibiotic resistance. One example is the Drug Resistance Index o ``DRI``. In this example, we compute such index using ``MIMIC``, comprehensive, a widely-used and freely available healthcare database that contains de-identified electronic health records of over 60,000 intensive care unit patients. Within ``MIMIC``, researchers have access to rich information, including patient demographics, clinical notes, laboratory results, and medication records. This dataset provides the necessary data, susceptibility and prescription information, to compute the drug resistance index. .. note:: In ``MIMIC``, the deidentification process for structured data required the removal of dates. In particular, dates were shifted into the future by a random offset for each individual patient in a consistent manner to preserve intervals, resulting in stays which occur sometime between the years 2100 and 2200. Time of day, day of the week, and approximate seasonality were conserved during date shifting. .. GENERATED FROM PYTHON SOURCE LINES 25-84 .. code-block:: default :lineno-start: 26 # Define sphinx gallery configuration # sphinx_gallery_thumbnail_number = 2 # Libraries import sys import warnings import numpy as np import pandas as pd import seaborn as sns import matplotlib as mpl from pathlib import Path try: __file__ TERMINAL = True except: TERMINAL = False # ------------------------- # Configuration # ------------------------- # Params rc = { 'axes.linewidth': 0.5, 'axes.labelsize': 9, 'axes.titlesize': 11, 'xtick.labelsize': 7, 'ytick.labelsize': 7, } # Configure seaborn style (context=talk) sns.set_theme(style="white", rc=rc) # Configure warnings warnings.filterwarnings("ignore", category=pd.errors.DtypeWarning) # ------------------------------------------------------- # Constants # ------------------------------------------------------- # Rename columns for susceptibility rename_susceptibility = { 'chartdate': 'DATE', 'micro_specimen_id': 'LAB_NUMBER', 'spec_type_desc': 'SPECIMEN', 'org_name': 'MICROORGANISM', 'ab_name': 'ANTIMICROBIAL', 'interpretation': 'SENSITIVITY' } # Rename columns for prescriptions rename_prescriptions = { 'drug': 'DRUG' } .. GENERATED FROM PYTHON SOURCE LINES 85-86 First, we need to load the ``susceptibility`` test data .. GENERATED FROM PYTHON SOURCE LINES 86-111 .. code-block:: default :lineno-start: 87 # ----------------------------- # Load susceptibility test data # ----------------------------- # Helper subset = rename_susceptibility.values() # Load data path = Path('../../pyamr/datasets/mimic') data1 = pd.read_csv(path / 'susceptibility.csv') # Rename columns data1 = data1.rename(columns=rename_susceptibility) # Format data data1 = data1[subset] data1 = data1.dropna(subset=subset, how='any') data1.DATE = pd.to_datetime(data1.DATE) data1.SENSITIVITY = data1.SENSITIVITY.replace({ 'S': 'sensitive', 'R': 'resistant', 'I': 'intermediate', 'P': 'pass' }) .. GENERATED FROM PYTHON SOURCE LINES 112-115 .. code-block:: default :lineno-start: 112 data1.head(5) .. raw:: html
DATE LAB_NUMBER SPECIMEN MICROORGANISM ANTIMICROBIAL SENSITIVITY
2 2171-06-10 3685553 URINE ESCHERICHIA COLI AMPICILLIN sensitive
3 2171-06-10 3685553 URINE ESCHERICHIA COLI CEFAZOLIN sensitive
4 2171-06-10 3685553 URINE ESCHERICHIA COLI TRIMETHOPRIM/SULFA sensitive
5 2171-06-10 3685553 URINE ESCHERICHIA COLI NITROFURANTOIN sensitive
6 2171-06-10 3685553 URINE ESCHERICHIA COLI GENTAMICIN sensitive


.. GENERATED FROM PYTHON SOURCE LINES 116-117 Lets also load the ``prescriptions`` (could be also overall usage) data .. GENERATED FROM PYTHON SOURCE LINES 117-139 .. code-block:: default :lineno-start: 118 # ---------------------------- # Load prescriptions # ---------------------------- # Load prescription data (limited to first nrows). data2 = pd.read_csv(path / 'prescriptions.csv', nrows=100000) data2 = data2.rename(columns=rename_prescriptions) # Format data data2.DRUG = data2.DRUG.str.upper() data2['DATE'] = pd.to_datetime(data2.starttime) data2 = data2.dropna(subset=['DATE'], how='any') # .. note:: We are only keeping those DRUGS which have # the exact name of the antimicrobial tested # in the susceptibility test record. There are # also brand names that could/should be # included # Filter data2 = data2[data2.DRUG.isin(data1.ANTIMICROBIAL.unique())] .. GENERATED FROM PYTHON SOURCE LINES 140-142 .. code-block:: default :lineno-start: 140 print(data2) .. rst-class:: sphx-glr-script-out .. code-block:: none subject_id hadm_id pharmacy_id starttime stoptime drug_type DRUG gsn ... form_rx dose_val_rx dose_unit_rx form_val_disp form_unit_disp doses_per_24_hrs route DATE 26 17868682 25218370 81568564 2167-05-24 20:00:00 2167-05-26 02:00:00 MAIN CEFAZOLIN 068632 ... NaN 2 g 1 BAG 3.0 IV 2167-05-24 20:00:00 48 17868682 24052239 59994266 2167-06-20 23:00:00 2167-06-22 11:00:00 MAIN VANCOMYCIN 043952 ... NaN 1000 mg 200 mL 2.0 IV 2167-06-20 23:00:00 58 17868682 24052239 39104292 2167-06-22 20:00:00 2167-06-25 12:00:00 MAIN VANCOMYCIN 009331 ... NaN 1500 mg 3 VIAL 2.0 IV 2167-06-22 20:00:00 60 17868682 24052239 1791946 2167-06-24 20:00:00 2167-06-25 12:00:00 MAIN VANCOMYCIN 009331 ... NaN 1500 mg 3 VIAL 2.0 IV 2167-06-24 20:00:00 76 12315540 24554730 25748315 2172-08-15 11:00:00 2172-08-16 20:00:00 MAIN LEVOFLOXACIN 029928 ... NaN 750 mg 1.5 TAB 0.0 PO 2172-08-15 11:00:00 ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 99154 15276693 21600683 24768410 2141-08-21 08:00:00 2141-08-26 18:00:00 MAIN LEVOFLOXACIN 46771.0 ... NaN 750 mg 1 TAB 0.0 PO/NG 2141-08-21 08:00:00 99218 10819462 26263456 61192290 2181-12-01 16:00:00 2181-12-02 15:00:00 MAIN CLINDAMYCIN 9344.0 ... NaN 600 mg 4 mL 3.0 IV 2181-12-01 16:00:00 99435 17442082 26038207 88544744 2135-08-07 15:00:00 2135-08-08 14:00:00 MAIN CEFEPIME 24095.0 ... NaN 2 g 1 VIAL 1.0 IV 2135-08-07 15:00:00 99511 17442082 20010297 74705027 2135-09-10 07:00:00 2135-09-10 11:00:00 MAIN CEFTRIAXONE 9162.0 ... NaN 1 gm 1 VIAL 1.0 IV 2135-09-10 07:00:00 99760 19103067 28239677 20279428 2124-06-02 04:00:00 2124-06-02 22:00:00 MAIN CLINDAMYCIN 9339.0 ... NaN 300 mg 2 CAP 3.0 PO/NG 2124-06-02 04:00:00 [2655 rows x 18 columns] .. GENERATED FROM PYTHON SOURCE LINES 143-144 Lets rename the variables. .. GENERATED FROM PYTHON SOURCE LINES 144-156 .. code-block:: default :lineno-start: 145 # Rename variables susceptibility, prescriptions = data1, data2 # Show if TERMINAL: print("\nSusceptibility:") print(susceptibility.head(10)) print("\nPrescriptions:") print(prescriptions.head(10)) .. GENERATED FROM PYTHON SOURCE LINES 157-161 Now we need to create a summary table including the resistance value, which will be computed using ``SARI`` and the usage which will be computed manually. This summary table is required as a preliminary step to compute the ``DRI``. .. GENERATED FROM PYTHON SOURCE LINES 161-204 .. code-block:: default :lineno-start: 162 # ------------------------ # Compute summary table # ------------------------ # Libraries from pyamr.core.sari import SARI # Create sari instance sari = SARI(groupby=[ susceptibility.DATE.dt.year, #'SPECIMEN', 'MICROORGANISM', 'ANTIMICROBIAL', 'SENSITIVITY'] ) # Compute susceptibility summary table smmry1 = sari.compute(susceptibility, return_frequencies=True) # .. note:: We are counting the number of rows as an indicator # of prescriptions. However, it would be possible to # sum the doses (with caution due to units, ...) # Compute prescriptions summary table. smmry2 = prescriptions \ .groupby(by=[prescriptions.DATE.dt.year, 'DRUG']) \ .DRUG.count().rename('use') #.DOSE.sum().rename('use') smmry2.index.names = ['DATE', 'ANTIMICROBIAL'] # Combine both summary tables smmry = smmry1.reset_index().merge( smmry2.reset_index(), how='inner', left_on=['DATE', 'ANTIMICROBIAL'], right_on=['DATE', 'ANTIMICROBIAL'] ) # Show if TERMINAL: print("\nSummary:") print(smmry) .. GENERATED FROM PYTHON SOURCE LINES 206-209 .. code-block:: default :lineno-start: 206 smmry .. raw:: html
DATE MICROORGANISM ANTIMICROBIAL intermediate pass resistant sensitive freq sari use
0 2110 BETA STREPTOCOCCUS GROUP B ERYTHROMYCIN 0.0 0.0 1.0 0.0 1.0 1.00 3
1 2110 CORYNEBACTERIUM UREALYTICUM SP. NOV. ERYTHROMYCIN 0.0 0.0 1.0 0.0 1.0 1.00 3
2 2110 POSITIVE FOR GROUP B BETA STREPTOCOCCI ERYTHROMYCIN 0.0 0.0 1.0 0.0 1.0 1.00 3
3 2110 POSITIVE FOR METHICILLIN RESISTANT S... ERYTHROMYCIN 0.0 0.0 1.0 0.0 1.0 1.00 3
4 2110 STAPH AUREUS COAG + ERYTHROMYCIN 0.0 0.0 39.0 21.0 60.0 0.65 3
... ... ... ... ... ... ... ... ... ... ...
9933 2210 STAPHYLOCOCCUS, COAGULASE NEGATIVE VANCOMYCIN 0.0 0.0 0.0 1.0 1.0 0.00 5
9934 2210 ESCHERICHIA COLI MEROPENEM 0.0 0.0 0.0 9.0 9.0 0.00 5
9935 2210 KLEBSIELLA PNEUMONIAE MEROPENEM 0.0 0.0 0.0 4.0 4.0 0.00 5
9936 2210 PSEUDOMONAS AERUGINOSA MEROPENEM 0.0 0.0 0.0 2.0 2.0 0.00 5
9937 2210 SERRATIA MARCESCENS MEROPENEM 0.0 0.0 0.0 1.0 1.0 0.00 5

9938 rows × 10 columns



.. GENERATED FROM PYTHON SOURCE LINES 210-211 Lets compute the ``DRI`` .. GENERATED FROM PYTHON SOURCE LINES 211-241 .. code-block:: default :lineno-start: 212 # ------------------------- # Compute DRI # ------------------------- # Libraries from pyamr.core.dri import DRI # Instance obj = DRI( column_resistance='sari', column_usage='use' ) # Compute overall DRI dri1 = obj.compute(smmry, groupby=['DATE'], return_usage=True) # Compute DRI by organism dri2 = obj.compute(smmry, groupby=['DATE', 'MICROORGANISM'], return_usage=True) if TERMINAL: print("DRI overall:") print(dri1) print("DRI by microorganism:") print(dri2) .. GENERATED FROM PYTHON SOURCE LINES 243-245 .. code-block:: default :lineno-start: 243 dri1 .. raw:: html
use_period dri
DATE
2110 30.0 0.6817
2111 262.0 0.2516
2112 196.0 0.1040
2113 159.0 0.1330
2114 64.0 0.0576
... ... ...
2206 303.0 0.1102
2207 135.0 0.2612
2208 36.0 0.2141
2209 192.0 0.2178
2210 75.0 0.0370

101 rows × 2 columns



.. GENERATED FROM PYTHON SOURCE LINES 247-249 .. code-block:: default :lineno-start: 247 dri2 .. raw:: html
use_period dri
DATE MICROORGANISM
2110 BETA STREPTOCOCCUS GROUP B 3.0 1.00
CORYNEBACTERIUM UREALYTICUM SP. NOV. 3.0 1.00
POSITIVE FOR GROUP B BETA STREPTOCOCCI 3.0 1.00
POSITIVE FOR METHICILLIN RESISTANT STAPH AUREUS 3.0 1.00
STAPH AUREUS COAG + 3.0 0.65
... ... ... ...
2210 PSEUDOMONAS AERUGINOSA 5.0 0.00
SERRATIA MARCESCENS 10.0 0.00
STAPH AUREUS COAG + 5.0 0.00
STAPHYLOCOCCUS LUGDUNENSIS 5.0 0.00
STAPHYLOCOCCUS, COAGULASE NEGATIVE 5.0 0.00

4125 rows × 2 columns



.. GENERATED FROM PYTHON SOURCE LINES 250-251 Lets visualise the overall ``DRI``. .. GENERATED FROM PYTHON SOURCE LINES 251-267 .. code-block:: default :lineno-start: 252 # -------------------------------------------- # Plot # -------------------------------------------- # Libraries import matplotlib.pyplot as plt import seaborn as sns # Display using relplot g = sns.relplot(data=dri1.reset_index(), x='DATE', y='dri', height=2, aspect=3.0, kind='line', linewidth=2, markersize=0, marker='o' ) plt.tight_layout() .. image-sg:: /_examples/indexes/images/sphx_glr_plot_dri_b_mimic_001.png :alt: plot dri b mimic :srcset: /_examples/indexes/images/sphx_glr_plot_dri_b_mimic_001.png :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 268-269 Lets visualise the microorganism-wise ``DRI``. .. GENERATED FROM PYTHON SOURCE LINES 269-315 .. code-block:: default :lineno-start: 270 # -------------------------------------------- # Format # -------------------------------------------- # Copy results aux = dri2.copy(deep=True) # Combine with summary aux = aux.merge(smmry, how='left', left_on=['DATE', 'MICROORGANISM'], right_on=['DATE', 'MICROORGANISM']) # Find microorganisms with more samples top = aux.groupby(by='MICROORGANISM') \ .freq.sum().sort_values(ascending=False) \ .head(4) # Filter by top microorganisms aux = aux[aux.MICROORGANISM.isin(top.index)] # -------------------------------------------- # Plot # -------------------------------------------- # Display g = sns.relplot(data=aux, x='DATE', y='dri', hue='MICROORGANISM', row='MICROORGANISM', palette='rocket', #style='event', col='region', palette='palette', height=1.5, aspect=4.0, kind='line', legend=False, linewidth=2, markersize=0, marker='o') """ # Iterate over each subplot to customize further for title, ax in g.axes_dict.items(): ax.text(1., .85, title, transform=ax.transAxes, fontsize=9, fontweight="normal", horizontalalignment='right') """ # Configure g.tight_layout() g.set_titles("{row_name}") #g.set_titles("") # Show plt.show() .. image-sg:: /_examples/indexes/images/sphx_glr_plot_dri_b_mimic_002.png :alt: STAPH AUREUS COAG +, ENTEROCOCCUS SP., ESCHERICHIA COLI, KLEBSIELLA PNEUMONIAE :srcset: /_examples/indexes/images/sphx_glr_plot_dri_b_mimic_002.png :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 316-317 The top microorganisms are: .. GENERATED FROM PYTHON SOURCE LINES 317-319 .. code-block:: default :lineno-start: 317 top .. rst-class:: sphx-glr-script-out .. code-block:: none MICROORGANISM ESCHERICHIA COLI 101050.0 STAPH AUREUS COAG + 28165.0 KLEBSIELLA PNEUMONIAE 28094.0 ENTEROCOCCUS SP. 10585.0 Name: freq, dtype: float64 .. GENERATED FROM PYTHON SOURCE LINES 320-321 The results look as follows: .. GENERATED FROM PYTHON SOURCE LINES 321-327 .. code-block:: default :lineno-start: 321 aux.rename(columns={ 'intermediate': 'I', 'sensitive': 'S', 'resistant': 'R', 'pass': 'P' }).round(decimals=2) .. raw:: html
DATE MICROORGANISM use_period dri ANTIMICROBIAL I P R S freq sari use
4 2110 STAPH AUREUS COAG + 3.0 0.65 ERYTHROMYCIN 0.0 0.0 39.0 21.0 60.0 0.65 3
32 2111 ENTEROCOCCUS SP. 7.0 0.35 VANCOMYCIN 0.0 0.0 23.0 43.0 66.0 0.35 7
33 2111 ESCHERICHIA COLI 5.0 0.23 CEFTRIAXONE 1.0 0.0 25.0 107.0 133.0 0.20 2
34 2111 ESCHERICHIA COLI 5.0 0.23 CEFAZOLIN 1.0 0.0 32.0 100.0 133.0 0.25 3
38 2111 KLEBSIELLA PNEUMONIAE 5.0 0.04 CEFTRIAXONE 0.0 0.0 1.0 25.0 26.0 0.04 2
... ... ... ... ... ... ... ... ... ... ... ... ...
9928 2210 ESCHERICHIA COLI 10.0 0.28 CEFTRIAXONE 0.0 0.0 5.0 4.0 9.0 0.56 5
9929 2210 ESCHERICHIA COLI 10.0 0.28 MEROPENEM 0.0 0.0 0.0 9.0 9.0 0.00 5
9930 2210 KLEBSIELLA PNEUMONIAE 10.0 0.00 CEFTRIAXONE 0.0 0.0 0.0 4.0 4.0 0.00 5
9931 2210 KLEBSIELLA PNEUMONIAE 10.0 0.00 MEROPENEM 0.0 0.0 0.0 4.0 4.0 0.00 5
9935 2210 STAPH AUREUS COAG + 5.0 0.00 VANCOMYCIN 0.0 0.0 0.0 1.0 1.0 0.00 5

1108 rows × 12 columns



.. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 12.707 seconds) .. _sphx_glr_download__examples_indexes_plot_dri_b_mimic.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_dri_b_mimic.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_dri_b_mimic.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_