.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "_examples\indexes\plot_asai_c_temporal.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code .. rst-class:: sphx-glr-example-title .. _sphx_glr__examples_indexes_plot_asai_c_temporal.py: ``ASAI`` - Compute timeseries --------------------------------- .. |1D30| replace:: 1D\ :sub:`30` .. |1M1| replace:: 1M\ :sub:`1` .. |1M30| replace:: 1M\ :sub:`30` .. |7D4| replace:: 1M\ :sub:`12` .. |1M12| replace:: 1M\ :sub:`12` .. |1M6| replace:: 1M\ :sub:`6` .. |1M3| replace:: 1M\ :sub:`3` .. |12M1| replace:: 12M\ :sub:`1` .. |SP| replace:: SHIFT\ :sub:`period` In order to study the temporal evolution of AMR, it is necessary to generate a resistance time series from the susceptibility test data. This is often achieved by computing the resistance index on consecutive partitions of the data. Note that each partition contains the susceptibility tests required to compute a resistance index. The traditional strategy of dealing with partitions considers independent time intervals (see yearly, monthly or weekly time series in Table 4.2). Unfortunately, this strategy forces to trade-off between granularity (level of detail) and accuracy. On one side, weekly time series are highly granular but inaccurate. On the other hand, yearly time series are accurate but rough. Note that the granularity is represented by the number of observations in a time series while the accuracy is closely related with the number of susceptibility tests used to compute the resistance index. Conversely, the overlapping time intervals strategy drops such dependence by defining a window of fixed size which is moved across time. The length of the window is denoted as period and the time step as shift. For instance, three time series obtained using the overlapping time intervals strategy with a monthly shift (1M) and window lengths of 12, 6 and 3 have been presented for the sake of clarity (see |1M12|, |1M6| and |1M3| in Table 4.2). .. image:: ../../_static/imgs/timeseries-generation.png :width: 500 :align: center :alt: Generation of Time-Series The notation to define the time series generation methodology (|SP|) is described with various examples in Table 4.2. For instance, |7D4| defines a time series with weekly resistance indexes (7D) calculated using the microbiology records available for the previous four weeks (4x7D). It is important to note that some notations are equivalent representations of the same susceptibility data at different granularities, hence their trends are comparable. As an example, the trend estimated for |1M1| should be approximately thirty times the trend estimated for |1D30|. .. GENERATED FROM PYTHON SOURCE LINES 46-50 Let's see how to compute ASAI time series with examples. We first load the data and select one single pair for clarity. .. GENERATED FROM PYTHON SOURCE LINES 51-137 .. code-block:: default :lineno-start: 54 # Libraries import numpy as np import pandas as pd import seaborn as sns import matplotlib as mpl import matplotlib.pyplot as plt # Import own libraries from pyamr.core.sari import sari from pyamr.core.asai import asai from pyamr.datasets.load import load_data_nhs # ------------------------- # Methods # ------------------------- def create_mapper(dataframe, column_key, column_value): """This method constructs a mapper Parameters ---------- dataframe: dataframe-like The dataframe from which the columns are extracted column_key: string-like The name of the column with the values for the keys of the mapper column_value: string-like The name of the column with the values for the values of the mapper Returns ------- dictionary """ dataframe = dataframe[[column_key, column_value]] dataframe = dataframe.drop_duplicates() return dict(zip(dataframe[column_key], dataframe[column_value])) # ------------------------- # Configuration # ------------------------- # Configure seaborn style (context=talk) sns.set(style="white") # Set matplotlib mpl.rcParams['xtick.labelsize'] = 9 mpl.rcParams['ytick.labelsize'] = 9 mpl.rcParams['axes.titlesize'] = 11 mpl.rcParams['legend.fontsize'] = 9 # Pandas configuration pd.set_option('display.max_colwidth', 40) pd.set_option('display.width', 300) pd.set_option('display.precision', 4) # Numpy configuration np.set_printoptions(precision=2) # ------------------------------------------- # Load data # ------------------------------------------- # Load data data, antimicrobials, microorganisms = load_data_nhs() # Show print("\nData:") print(data) print("\nColumns:") print(data.columns) print("\nDtypes:") print(data.dtypes) # Filter idxs_spec = data.specimen_code.isin(['URICUL']) idxs_abxs = data.antimicrobial_code.isin(['AAUG']) # Filter data = data[idxs_spec & idxs_abxs] # Filter dates (2016-2018 missing) data = data[data.date_received.between('2008-01-01', '2016-12-31')] .. rst-class:: sphx-glr-script-out .. code-block:: none Data: date_received date_outcome patient_id laboratory_number specimen_code specimen_name ... antimicrobial_code antimicrobial_name sensitivity_method sensitivity mic reported 0 2009-01-03 00:00:00 NaN 20091 X428501 BLDCUL NaN ... AAMI amikacin NaN sensitive NaN NaN 1 2009-01-03 00:00:00 NaN 20091 X428501 BLDCUL NaN ... AAMO amoxycillin NaN resistant NaN NaN 2 2009-01-03 00:00:00 NaN 20091 X428501 BLDCUL NaN ... AAUG augmentin NaN sensitive NaN NaN 3 2009-01-03 00:00:00 NaN 20091 X428501 BLDCUL NaN ... AAZT aztreonam NaN sensitive NaN NaN 4 2009-01-03 00:00:00 NaN 20091 X428501 BLDCUL NaN ... ACAZ ceftazidime NaN sensitive NaN NaN ... ... ... ... ... ... ... ... ... ... ... ... ... ... 7929 2021-01-21 23:56:00 2021-01-22 00:00:00 199863 H2230229 FBCUL Fluid in Blood Culture Bottles ... AGEN gentamicin DD resistant NaN Y 7930 2021-01-21 23:56:00 2021-01-22 00:00:00 199863 H2230229 FBCUL Fluid in Blood Culture Bottles ... AMER meropenem DD sensitive NaN Y 7931 2021-01-21 23:56:00 2021-01-22 00:00:00 199863 H2230229 FBCUL Fluid in Blood Culture Bottles ... ATAZ piperacillin-tazobactam DD sensitive NaN N 7932 2021-01-21 23:56:00 2021-01-22 00:00:00 199863 H2230229 FBCUL Fluid in Blood Culture Bottles ... ATEM temocillin DD sensitive NaN N 7933 2021-01-21 23:56:00 2021-01-22 00:00:00 199863 H2230229 FBCUL Fluid in Blood Culture Bottles ... ATIG tigecycline DD sensitive NaN N [3770034 rows x 15 columns] Columns: Index(['date_received', 'date_outcome', 'patient_id', 'laboratory_number', 'specimen_code', 'specimen_name', 'specimen_description', 'microorganism_code', 'microorganism_name', 'antimicrobial_code', 'antimicrobial_name', 'sensitivity_method', 'sensitivity', 'mic', 'reported'], dtype='object') Dtypes: date_received datetime64[ns] date_outcome object patient_id object laboratory_number object specimen_code object specimen_name object specimen_description object microorganism_code object microorganism_name object antimicrobial_code object antimicrobial_name object sensitivity_method object sensitivity object mic object reported object dtype: object .. GENERATED FROM PYTHON SOURCE LINES 138-148 Independent Time Intervals (ITI) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ This is the traditional method used in antimicrobial surveillance systems where the time spans considered are independent; that is, they do not overlap (e.g. monthly time series - |1M1| or yearly timeseries - |12M1|). .. todo :: Include in ASAI an option to filter and keep only those genus and species that have values over all the time period? or at least for more than 80 percent of the period? .. GENERATED FROM PYTHON SOURCE LINES 149-315 .. code-block:: default :lineno-start: 150 # ------------------------------------------- # Compute ITI sari (temporal) # ------------------------------------------- from pyamr.core.sari import SARI # Create SARI instance sari = SARI(groupby=['specimen_code', 'microorganism_code', 'antimicrobial_code', 'sensitivity']) # Create constants shift, period = '6M', '800D' # Compute sari timeseries temp = sari.compute(data, shift=shift, period=period, cdate='date_received') # Reset index temp = temp.reset_index() # Show print("\nSARI (temporal)") print(temp) # ------------------------------------------- # Filter for sari (temporal) # ------------------------------------------- # Appearance of organisms by date (or even freq instead of 1/0). s = pd.crosstab(temp['microorganism_code'], temp['date_received']) # Filter #temp = temp[temp['microorganism_code'].isin(s[s.all(axis=1)].index)] # Show print("Remaining microorganisms:") print(temp.microorganism_code.unique()) # ------------------------- # Format dataframe # ------------------------- # Create mappers abx_map = create_mapper(antimicrobials, 'antimicrobial_code', 'category') org_map = create_mapper(microorganisms, 'microorganism_code', 'genus') grm_map = create_mapper(microorganisms, 'microorganism_code', 'gram_stain') #iti = iti[['date_received', 'freq', 'sari', 'antimicrobial_code', 'microorganism_code']] # Include categories temp['category'] = temp['antimicrobial_code'].map(abx_map) temp['genus'] = temp['microorganism_code'].map(org_map) temp['gram'] = temp['microorganism_code'].map(grm_map) # Empty grams are a new category (unknown - u) temp.gram = temp.gram.fillna('u') # Show print("\nMicroorganisms without gram stain:") print(temp[temp.gram=='u'].microorganism_code.unique()) # ------------------------------- # Create antimicrobial spectrum # ------------------------------- # Libraries from pyamr.core.asai import ASAI # Create antimicrobial spectrum of activity instance asai = ASAI(column_genus='genus', column_specie='microorganism_code', column_resistance='sari', column_frequency='freq') # Compute scores = asai.compute(temp, groupby=['date_received', 'antimicrobial_code', 'gram'], weights='uniform', threshold=None, min_freq=0) # Unstack scores = scores # Show scores print("\nASAI:") print(scores.unstack()) # Plot # ---- # Create figure fig, axes = plt.subplots(1, 2, figsize=(10, 3), sharey=True) # Show sns.lineplot(data=scores, x='date_received', y='ASAI_SCORE', hue='gram', palette="tab10", linewidth=0.75, linestyle='--', marker='o', markersize=3, markeredgecolor='k', markeredgewidth=0.5, markerfacecolor=None, alpha=0.5, ax=axes[0]) plt.show() """ # ------------------------- # Compute ASAI # ------------------------- iti = iti.rename(columns={ 'microorganism_code': 'SPECIE', 'sari': 'RESISTANCE', 'genus': 'GENUS' }) fig, axes = plt.subplots(1, 2, figsize=(10, 3), sharey=True) # Variable for filtering s = pd.crosstab(iti['SPECIE'], iti['date_received']) # Create aux (non filtered) aux = iti.copy(deep=True) aux = aux.groupby(['date_received', 'antimicrobial_code', 'gram'])\ .apply(asai, weights='uniform', threshold=0.5) plt.show() # Create aux (filtered) aux2 = iti.copy(deep=True) aux2 = aux2[aux2['SPECIE'].isin(s[s.all(axis=1)].index)] aux2 = aux2.groupby(['date_received', 'antimicrobial_code', 'gram'])\ .apply(asai, weights='uniform', threshold=0.8) a = 1 # Display print("\nCrosstab:") print(s) print("\nSelected:") print(s[s.all(axis=1)]) print("\nRemaining:") print(iti) print(aux.unstack()) print(aux2.unstack()) sns.lineplot(data=aux.reset_index(), x='date_received', y='ASAI_SCORE', palette="tab10", linewidth=0.75, hue='gram', marker='o', ax=axes[0]) sns.lineplot(data=aux2.reset_index(), x='date_received', y='ASAI_SCORE', palette="tab10", linewidth=0.75, hue='gram', marker='o', ax=axes[1]) """ .. image-sg:: /_examples/indexes/images/sphx_glr_plot_asai_c_temporal_001.png :alt: plot asai c temporal :srcset: /_examples/indexes/images/sphx_glr_plot_asai_c_temporal_001.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out .. code-block:: none SARI (temporal) specimen_code microorganism_code antimicrobial_code date_received hide intermediate not done resistant sensitive freq sari 0 URICUL ABAU AAUG 2009-07-31 0.0 0.0 0.0 3.0 2.0 5.0 0.6000 1 URICUL ABAU AAUG 2010-01-31 0.0 0.0 0.0 4.0 3.0 7.0 0.5714 2 URICUL ABAU AAUG 2010-07-31 0.0 0.0 0.0 8.0 6.0 14.0 0.5714 3 URICUL ABAU AAUG 2011-01-31 0.0 0.0 0.0 11.0 8.0 19.0 0.5789 4 URICUL ABAU AAUG 2011-07-31 0.0 0.0 0.0 13.0 9.0 22.0 0.5909 .. ... ... ... ... ... ... ... ... ... ... ... 514 URICUL VIRST AAUG 2012-07-31 0.0 0.0 0.0 0.0 1.0 1.0 0.0000 515 URICUL VIRST AAUG 2013-07-31 0.0 0.0 0.0 0.0 2.0 2.0 0.0000 516 URICUL VIRST AAUG 2014-01-31 0.0 0.0 0.0 0.0 3.0 3.0 0.0000 517 URICUL YEAST AAUG 2015-01-31 0.0 0.0 0.0 0.0 1.0 1.0 0.0000 518 URICUL YEAST AAUG 2015-07-31 0.0 0.0 0.0 0.0 2.0 2.0 0.0000 [519 rows x 11 columns] Remaining microorganisms: ['ABAU' 'ACHRO' 'ACINE' 'AEROC' 'AEROM' 'AFAE' 'AHS' 'AHYD' 'ALWO' 'AVIR' 'AXYL' 'A_ARADIORES' 'A_BSGD' 'A_CHRYSEOB' 'A_CHRYSEOM' 'A_CTESTOSTE' 'A_EAVIUM' 'A_ELUDWIGII' 'A_FLAVOBAC' 'A_HAFNIA S' 'A_ISOLATED' 'A_LACTOBAC' 'A_MBG' 'A_PROVIDEN' 'A_RAOULTEL' 'A_SBOVIS' 'A_SODORIFER' 'BACIL' 'BCEP' 'BHSA' 'BHSB' 'BHSC' 'BHSCG' 'BHSG' 'CAMA' 'CBRA' 'CFRE' 'CIND' 'CITRO' 'CKOS' 'CNS' 'COLIF' 'CORYN' 'CSTR' 'DACI' 'DIPHT' 'EAER' 'EASB' 'ECLO' 'ECOL' 'EFAM' 'EFAS' 'ENTB' 'ENTC' 'HAEMO' 'HALV' 'HINF' 'KLEBS' 'KOXY' 'KPNE' 'LFC' 'MCOL' 'MICROC' 'MMOR' 'MODO' 'NEISS' 'NLF' 'PAER' 'PANTO' 'PMIR' 'PPUT' 'PRET' 'PROTE' 'PSEUD' 'PSTUA' 'PVUL' 'QMCOL' 'QMIXY' 'SAGA' 'SALMO' 'SAUR' 'SEPI' 'SERRA' 'SHAEM' 'SLIQ' 'SLUG' 'SMAL' 'SMAR' 'SMIL' 'SMIT' 'SPYO' 'SSAL' 'SSAP' 'STAPH' 'STREP' 'VIRST' 'YEAST'] Microorganisms without gram stain: ['A_CHRYSEOM' 'A_ISOLATED' 'A_MBG' 'COLIF' 'DIPHT' 'LFC' 'MCOL' 'MODO' 'NLF' 'QMCOL' 'QMIXY' 'YEAST'] ASAI: N_GENUS N_SPECIE ASAI_SCORE gram n p u n p u n p u date_received antimicrobial_code 2009-01-31 AAUG 5.0 3.0 1.0 5.0 4.0 1.0 0.6000 1.0000 1.0000 2009-07-31 AAUG 13.0 3.0 1.0 14.0 8.0 1.0 0.5000 1.0000 1.0000 2010-01-31 AAUG 9.0 3.0 1.0 11.0 7.0 1.0 0.2778 1.0000 1.0000 2010-07-31 AAUG 13.0 3.0 2.0 15.0 8.0 2.0 0.3462 1.0000 1.0000 2011-01-31 AAUG 10.0 4.0 1.0 11.0 10.0 1.0 0.2500 1.0000 1.0000 2011-07-31 AAUG 11.0 3.0 1.0 12.0 6.0 1.0 0.3182 1.0000 1.0000 2012-01-31 AAUG 11.0 4.0 1.0 14.0 7.0 1.0 0.3182 1.0000 1.0000 2012-07-31 AAUG 11.0 4.0 2.0 21.0 10.0 3.0 0.2576 1.0000 1.0000 2013-01-31 AAUG 14.0 6.0 3.0 29.0 17.0 5.0 0.3810 0.9667 0.6667 2013-07-31 AAUG 19.0 4.0 3.0 36.0 13.0 3.0 0.4825 1.0000 1.0000 2014-01-31 AAUG 14.0 6.0 4.0 34.0 14.0 5.0 0.5179 0.9667 1.0000 2014-07-31 AAUG 16.0 4.0 4.0 36.0 16.0 6.0 0.4271 0.9167 0.8750 2015-01-31 AAUG 16.0 6.0 5.0 34.0 19.0 7.0 0.5333 1.0000 0.7000 2015-07-31 AAUG 13.0 4.0 3.0 27.0 13.0 3.0 0.4423 1.0000 0.6667 2016-01-31 AAUG 11.0 1.0 2.0 22.0 4.0 2.0 0.4394 1.0000 1.0000 '\n# -------------------------\n# Compute ASAI\n# -------------------------\niti = iti.rename(columns={\n \'microorganism_code\': \'SPECIE\',\n \'sari\': \'RESISTANCE\',\n \'genus\': \'GENUS\'\n})\n\n\nfig, axes = plt.subplots(1, 2, figsize=(10, 3), sharey=True)\n\n# Variable for filtering\ns = pd.crosstab(iti[\'SPECIE\'], iti[\'date_received\'])\n\n# Create aux (non filtered)\naux = iti.copy(deep=True)\naux = aux.groupby([\'date_received\',\n \'antimicrobial_code\',\n \'gram\']) .apply(asai, weights=\'uniform\', threshold=0.5)\n\n\nplt.show()\n\n# Create aux (filtered)\naux2 = iti.copy(deep=True)\naux2 = aux2[aux2[\'SPECIE\'].isin(s[s.all(axis=1)].index)]\naux2 = aux2.groupby([\'date_received\',\n \'antimicrobial_code\',\n \'gram\']) .apply(asai, weights=\'uniform\', threshold=0.8)\n\na = 1\n# Display\nprint("\nCrosstab:")\nprint(s)\nprint("\nSelected:")\nprint(s[s.all(axis=1)])\nprint("\nRemaining:")\nprint(iti)\nprint(aux.unstack())\nprint(aux2.unstack())\n\nsns.lineplot(data=aux.reset_index(),\n x=\'date_received\',\n y=\'ASAI_SCORE\',\n palette="tab10",\n linewidth=0.75,\n hue=\'gram\',\n marker=\'o\',\n ax=axes[0])\n\nsns.lineplot(data=aux2.reset_index(),\n x=\'date_received\',\n y=\'ASAI_SCORE\',\n palette="tab10",\n linewidth=0.75,\n hue=\'gram\',\n marker=\'o\',\n ax=axes[1])\n' .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 13.933 seconds) .. _sphx_glr_download__examples_indexes_plot_asai_c_temporal.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_asai_c_temporal.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_asai_c_temporal.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_