.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "_examples\indexes\plot_acsi_b_mimic.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code .. rst-class:: sphx-glr-example-title .. _sphx_glr__examples_indexes_plot_acsi_b_mimic.py: ``ACSI`` - Example using ``MIMIC`` ---------------------------------- .. GENERATED FROM PYTHON SOURCE LINES 6-44 .. code-block:: default :lineno-start: 7 # Libraries import sys import warnings import numpy as np import pandas as pd import seaborn as sns import matplotlib as mpl from pathlib import Path try: __file__ TERMINAL = True except: TERMINAL = False # Configure seaborn style (context=talk) sns.set_theme(style="white") # Configure warnings warnings.filterwarnings("ignore", category=pd.errors.DtypeWarning) # ------------------------------------------------------- # Constants # ------------------------------------------------------- # Rename columns for susceptibility rename_susceptibility = { 'chartdate': 'DATE', 'micro_specimen_id': 'LAB_NUMBER', 'spec_type_desc': 'SPECIMEN', 'org_name': 'MICROORGANISM', 'ab_name': 'ANTIMICROBIAL', 'interpretation': 'SENSITIVITY' } .. GENERATED FROM PYTHON SOURCE LINES 45-46 Let's load the ``susceptibility`` test data .. GENERATED FROM PYTHON SOURCE LINES 46-68 .. code-block:: default :lineno-start: 48 # ----------------------------- # Load susceptibility test data # ----------------------------- nrows=1000 # Helper subset = rename_susceptibility.values() # Load data path = Path('../../pyamr/datasets/mimic') data1 = pd.read_csv(path / 'susceptibility.csv', nrows=nrows) # Rename columns data1 = data1.rename(columns=rename_susceptibility) # Format data data1 = data1[subset] data1 = data1.dropna(subset=subset, how='any') data1.DATE = pd.to_datetime(data1.DATE) .. GENERATED FROM PYTHON SOURCE LINES 69-71 .. code-block:: default :lineno-start: 69 data1.head(5) .. raw:: html
DATE LAB_NUMBER SPECIMEN MICROORGANISM ANTIMICROBIAL SENSITIVITY
2 2171-06-10 3685553 URINE ESCHERICHI... AMPICILLIN S
3 2171-06-10 3685553 URINE ESCHERICHI... CEFAZOLIN S
4 2171-06-10 3685553 URINE ESCHERICHI... TRIMETHOPR... S
5 2171-06-10 3685553 URINE ESCHERICHI... NITROFURAN... S
6 2171-06-10 3685553 URINE ESCHERICHI... GENTAMICIN S


.. GENERATED FROM PYTHON SOURCE LINES 72-78 Let's compute the ``ACSI`` and return the combinations. .. note:: This step is quite computationally expensive since it has to create all possible antimicrobial combinations within each isolate in the susceptibility test data. Thus, it is recommended to save the results for future analysis and/or visualisation. .. GENERATED FROM PYTHON SOURCE LINES 78-107 .. code-block:: default :lineno-start: 80 # Libraries from pyamr.core.acsi import ACSI # Compute index contingency, combinations = \ ACSI().compute(data1, groupby=[ 'DATE', 'SPECIMEN', 'MICROORGANISM' ], return_combinations=True) # Save #contingency.to_csv('contingency_%s.csv' % nrows) #combinations.to_csv('combinations_%s.csv' % nrows) # Display print("\nCombinations:") print(combinations) print("\nContingency:") print(contingency) .. rst-class:: sphx-glr-script-out .. code-block:: none c:\users\kelda\desktop\repositories\github\pyamr\main\pyamr\core\acsi.py:120: RuntimeWarning: invalid value encountered in divide c:\users\kelda\desktop\repositories\github\pyamr\main\pyamr\core\acsi.py:121: RuntimeWarning: invalid value encountered in divide Combinations: DATE SPECIMEN MICROORGANISM LAB_NUMBER ANTIMICROBIAL_x ANTIMICROBIAL_y SENSITIVITY_x SENSITIVITY_y class 0 2112-10-05 BLOOD CULTURE VIRIDANS S... 3530668 CLINDAMYCIN ERYTHROMYCIN S R SR 1 2112-10-05 BLOOD CULTURE VIRIDANS S... 3530668 CLINDAMYCIN PENICILLIN G S S SS 2 2112-10-05 BLOOD CULTURE VIRIDANS S... 3530668 CLINDAMYCIN VANCOMYCIN S S SS 3 2112-10-05 BLOOD CULTURE VIRIDANS S... 3530668 ERYTHROMYCIN PENICILLIN G R S RS 4 2112-10-05 BLOOD CULTURE VIRIDANS S... 3530668 ERYTHROMYCIN VANCOMYCIN R S RS ... ... ... ... ... ... ... ... ... ... 5074 2202-04-26 URINE MORGANELLA... 8654517 NITROFURAN... TOBRAMYCIN R R RR 5075 2202-04-26 URINE MORGANELLA... 8654517 NITROFURAN... TRIMETHOPR... R R RR 5076 2202-04-26 URINE MORGANELLA... 8654517 PIPERACILL... TOBRAMYCIN S R SR 5077 2202-04-26 URINE MORGANELLA... 8654517 PIPERACILL... TRIMETHOPR... S R SR 5078 2202-04-26 URINE MORGANELLA... 8654517 TOBRAMYCIN TRIMETHOPR... R R RR [5079 rows x 9 columns] Contingency: class II IR IS RI RR RS SI SR SS acsi DATE SPECIMEN MICROORGANISM ANTIMICROBI... ANTIMICROBI... 2112-10-05 BLOOD CULTURE VIRIDANS ST... CLINDAMYCIN ERYTHROMYCIN NaN NaN NaN NaN NaN NaN NaN 1.0 NaN 0.0 PENICILLIN G NaN NaN NaN NaN NaN NaN NaN NaN 1.0 0.0 VANCOMYCIN NaN NaN NaN NaN NaN NaN NaN NaN 1.0 0.0 ERYTHROMYCIN PENICILLIN G NaN NaN NaN NaN NaN 1.0 NaN NaN NaN 0.0 VANCOMYCIN NaN NaN NaN NaN NaN 1.0 NaN NaN NaN 0.0 ... .. .. .. .. ... ... .. ... ... ... 2202-04-26 URINE MORGANELLA ... NITROFURANTOIN TOBRAMYCIN NaN NaN NaN NaN 1.0 NaN NaN NaN NaN 0.0 TRIMETHOPRI... NaN NaN NaN NaN 1.0 NaN NaN NaN NaN 0.0 PIPERACILLI... TOBRAMYCIN NaN NaN NaN NaN NaN NaN NaN 1.0 NaN 0.0 TRIMETHOPRI... NaN NaN NaN NaN NaN NaN NaN 1.0 NaN 0.0 TOBRAMYCIN TRIMETHOPRI... NaN NaN NaN NaN 1.0 NaN NaN NaN NaN 0.0 [4464 rows x 10 columns] .. GENERATED FROM PYTHON SOURCE LINES 108-111 Let's compute the ``ACSI``. .. note:: We are loading previously computed combinations. .. GENERATED FROM PYTHON SOURCE LINES 111-127 .. code-block:: default :lineno-start: 112 # Libraries from pyamr.datasets.load import fixture # Path combinations = fixture(name='mimic/asci/combinations.csv') # Lets compute the overall index contingency = ACSI().compute( combinations.reset_index(), groupby=[], flag_combinations=True, return_combinations=False ) .. GENERATED FROM PYTHON SOURCE LINES 128-129 Let's visualise the result .. GENERATED FROM PYTHON SOURCE LINES 129-166 .. code-block:: default :lineno-start: 130 # ------------------------------------------ # Display # ------------------------------------------ # Display import numpy as np import seaborn as sns import matplotlib.pyplot as plt # Get unique antimicrobials s1 = set(combinations.ANTIMICROBIAL_x.unique()) s2 = set(combinations.ANTIMICROBIAL_x.unique()) abxs = s1.union(s2) # Create index with all pairs index = pd.MultiIndex.from_product([abxs, abxs]) # Reformat aux = contingency['acsi'] \ .reindex(index, fill_value=np.nan) \ .unstack() # Create figure fig, axs = plt.subplots(nrows=1, ncols=1, sharey=False, sharex=False, figsize=(12, 9) ) # Display sns.heatmap(data=aux * 100, ax=axs, annot=True, annot_kws={'size':7}, square=True, linewidth=.5, xticklabels=True, yticklabels=True, cmap='coolwarm', vmin=-70, vmax=70, center=0, cbar_kws={'label': 'Collateral Sensitivity Index'}) # Show plt.tight_layout() plt.show() .. image-sg:: /_examples/indexes/images/sphx_glr_plot_acsi_b_mimic_001.png :alt: plot acsi b mimic :srcset: /_examples/indexes/images/sphx_glr_plot_acsi_b_mimic_001.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 7.821 seconds) .. _sphx_glr_download__examples_indexes_plot_acsi_b_mimic.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_acsi_b_mimic.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_acsi_b_mimic.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_