.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "_examples\forecasting\plot_wls_search.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code .. rst-class:: sphx-glr-example-title .. _sphx_glr__examples_forecasting_plot_wls_search.py: WLS - Search ------------------------- .. GENERATED FROM PYTHON SOURCE LINES 6-140 .. image-sg:: /_examples/forecasting/images/sphx_glr_plot_wls_search_001.png :alt: plot wls search :srcset: /_examples/forecasting/images/sphx_glr_plot_wls_search_001.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out .. code-block:: none c:\users\kelda\desktop\repositories\virtualenvs\venv-py391-pyamr\lib\site-packages\statsmodels\regression\linear_model.py:807: RuntimeWarning: divide by zero encountered in log c:\users\kelda\desktop\repositories\virtualenvs\venv-py391-pyamr\lib\site-packages\statsmodels\regression\linear_model.py:807: RuntimeWarning: divide by zero encountered in log c:\users\kelda\desktop\repositories\virtualenvs\venv-py391-pyamr\lib\site-packages\statsmodels\regression\linear_model.py:807: RuntimeWarning: divide by zero encountered in log c:\users\kelda\desktop\repositories\virtualenvs\venv-py391-pyamr\lib\site-packages\statsmodels\regression\linear_model.py:807: RuntimeWarning: divide by zero encountered in log c:\users\kelda\desktop\repositories\virtualenvs\venv-py391-pyamr\lib\site-packages\statsmodels\regression\linear_model.py:807: RuntimeWarning: divide by zero encountered in log Grid search: 0 1 2 3 4 5 wls-rsquared 0.7508 0.5715 0.5383 0.4427 0.4913 0.2871 wls-rsquare... 0.7482 0.5671 0.5336 0.437 0.4861 0.2798 wls-fvalue 295.1824 130.6808 114.2534 77.8336 94.6547 39.463 wls-fprob 0.0 0.0 0.0 0.0 0.0 0.0 wls-aic 1127.8602 inf inf inf inf inf wls-bic 1133.0705 inf inf inf inf inf wls-llf -561.9301 -inf -inf -inf -inf -inf wls-mse_model 1340457.1185 178972.628 137413.0249 76234.7768 74119.1589 21463.64 wls-mse_resid 4541.1139 1369.5401 1202.704 979.4588 783.0477 543.8925 wls-mse_total 18035.215 3163.5107 2578.5658 1739.6135 1523.8165 755.203 wls-const_coef 169.0879 259.2213 274.591 314.9257 300.5514 381.1919 wls-const_std 13.3771 16.5491 16.5363 15.9253 16.066 12.4215 wls-const_t... 12.6401 15.6638 16.6053 19.7752 18.7073 30.688 wls-const_t... 0.0 0.0 0.0 0.0 0.0 0.0 wls-const_cil 142.5415 226.3802 241.7752 283.3224 268.669 356.5418 wls-const_ciu 195.6343 292.0624 307.4068 346.5289 332.4338 405.842 wls-x1_coef 4.0109 2.6599 2.4545 1.9319 2.1034 1.0746 wls-x1_std 0.2334 0.2327 0.2296 0.219 0.2162 0.1711 wls-x1_tvalue 17.1809 11.4316 10.6889 8.8223 9.7291 6.282 wls-x1_tprob 0.0 0.0 0.0 0.0 0.0 0.0 wls-x1_cil 3.5476 2.1981 1.9988 1.4973 1.6744 0.7352 wls-x1_ciu 4.4741 3.1216 2.9102 2.3664 2.5325 1.4141 wls-s_dw 0.22 0.426 0.479 0.633 0.605 0.891 wls-s_jb_value 4.002 11.477 12.933 17.487 13.908 20.172 wls-s_jb_prob 0.135 0.0032 0.0015 0.0002 0.001 0.0 wls-s_skew 0.489 0.532 0.544 0.654 0.596 0.418 wls-s_kurtosis 2.935 4.274 4.386 4.577 4.384 5.035 wls-s_omnib... 4.163 9.688 10.389 13.19 11.283 11.307 wls-s_omnib... 0.125 0.008 0.006 0.001 0.004 0.004 wls-m_dw 0.2198 0.1507 0.1349 0.0995 0.1111 0.0615 wls-m_jb_value 4.0017 7.8715 10.8827 16.8792 15.2715 19.8386 wls-m_jb_prob 0.1352 0.0195 0.0043 0.0002 0.0005 0.0 wls-m_skew 0.4889 -0.6401 -0.7696 -0.9868 -0.932 -1.089 wls-m_kurtosis 2.9346 3.5001 3.4926 3.3949 3.4364 3.1338 wls-m_nm_value 4.1633 8.2523 10.723 14.9411 13.9033 16.4058 wls-m_nm_prob 0.1247 0.0161 0.0047 0.0006 0.001 0.0003 wls-m_ks_value 0.55 0.58 0.6195 0.6699 0.6092 0.6998 wls-m_ks_prob 0.0 0.0 0.0 0.0 0.0 0.0 wls-m_shp_v... 0.9703 0.9297 0.9143 0.8843 0.8922 0.862 wls-m_shp_prob 0.0233 0.0 0.0 0.0 0.0 0.0 wls-m_ad_value 1.0302 3.2026 3.9394 5.2416 4.9361 5.7562 wls-m_ad_nnorm False False False False False False wls-exog [[1.0, 0.0... [[1.0, 0.0... [[1.0, 0.0... [[1.0, 0.0... [[1.0, 0.0... [[1.0, 0.0... wls-endog [49.650303... [49.650303... [49.650303... [49.650303... [49.650303... [49.650303... wls-trend c c c c c c wls-weights [1.0, 1.0,... [0.0657166... [0.0447889... [0.0156449... [0.0189971... [1.9369381... wls-W ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_wls_search.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_