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Abstract

The photoplethysmogram (PPG) is a signal that measures pulsatile volume of blood in

tissue and is collected by portable, non-invasive pulse oximeters. PPG signals can be used

to predict the severity of dengue patients during dengue epidemics. However, raw PPG

waveforms are susceptible to artifacts and noise. The classification of PPG signal quality

is therefore crucial. In this work, PPG waveforms are classified into three categories

according to their quality, and seven signal quality indices (SQIs) are applied to extract

the features of each segment of PPG. At the same time, the spectrogram of each PPG

sample is calculated as another feature. With the help of k-means clustering on the

SQI features, each sample is labelled with a signal quality as ground truth. Apply an

autoencoder to reduce the dimension of SQI features to observe the data samples in 2-D,

and compare the PCA method. Using the above PPG samples and labels as dataset, apply

decision tree, random forest, and AdaBoost classifiers on raw PPG data or SQI features.

Build a convolutional neural networks (CNN) model for 2-D spectrograms to learn the

training set data, and predict the test set data. Experimental results show that: SQIs

are effective PPG features that facilitate quality labelling and dimensionality reduction.

The spectrogram is also an effective PPG feature, and the CNN has good stability, good

flexibility, high accuracy and fast speed to be an ideal PPG signal quality classification

method.
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Chapter 1

Introduction

1.1 Overview

Photoplethysmogram (PPG) is a non-invasive circulatory signal related to the pulsatile

volume of blood in tissue and is typically collected by pulse oximeters [3]. Each year,

an estimated 390 million dengue infections occur around the world, of which 96 million

manifest clinically (with any severity of disease) [13] [14]. Effective identification of severe

cases is crucial. Pulse oximeters are low-cost wearable devices that would monitor patients

during epidemics to support medical triage and management in severe dengue.

Our clinical partners, Oxford University Clinical Research Unit (OUCRU) in Viet-

nam has been collecting prospective clinical data from patients with dengue [15]. These

data include 6,000+ hours of continuous raw PPG and ECG waveforms collected during

hospitalisation. However, these raw data collected via pulse oximeters can be subject to

artefact and noise, and is very susceptible to patient movement; therefore, cannot be used

directly to provide effective medical advice.

It is extremely critical to distinguish the quality of the PPG signal and extract the

effective signal of high quality. We can build a model to segment the PPG signal and

classify each segment. For the raw data without quality labels, how to automatically label

it is the problem of our research.
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1.2 Aim

We aim to analyse the raw PPG waveforms and develop signal quality indices (SQIs) to

label the segmented data and visualise the signal quality clusters in 2-D space.

The ultimate goal is to achieve automatic labelling of PPG quality via classification

methods, when a dataset with both the input features (SQIs, raw data, spectrograms) and

quality outcomes (classes) are ready.

1.3 Report Outline

• Chapter 2 will cover biomedical signal processing, acquisition of PPG signals, the

characteristics and medical applications, and quality of PPG signals.

• Chapter 3 will review related work in other papers, including PPG signal quality

analysis and classification methods.

• Chapter 4 will show our work, including the design steps of PPG signal analysis:

data preprocessing, feature extraction, semi-automatic labelling, visualisation, and

automatic labelling.

• Chapter 5 will present the experimental design, implementation, results, and discus-

sion.

• Chapter 6 will draw conclusions and talk about future work.
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Chapter 2

Background

This chapter describes the application, acquisition, characteristics, issues, and quality of

PPG signals.

2.1 PPG Signal

Pulse oximeter is a commonly used sensor in medicine and has the advantages of being

cheap, non-invasive, portable and small. PPG signals are common biomedical signals

collected from pulse oximeters to estimate the skin blood flow using infrared light [1]. PPG

is widely used to measure the heart and respiratory rates [16], oxygen saturation [17] [18],

blood pressure [19], cardiac output [20], and for assessing autonomic functions [1].

Figure 2.1: PPG pulsatile phases [1]

A typical PPG pulse as in Fig. 2.1 consists of two phases: (1) the rising edge of the
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pulse called the anacrotic phase, and (2) the falling edge of the pulse called the catacrotic

phase [1]. The first phase is about systole, and the second phase is about diastole and wave

reflections from the periphery. A dicrotic notch is usually seen in the catacrotic phase of

subjects with healthy compliant arteries [1].

Figure 2.2: Common measurement sites for PPG [2]

Wearable PPG sensors can only be placed in specific body locations, as shown in

Fig. 2.2. However, different measurement locations have different accuracies. While the

use of specific body locations such as fingers, earlobes and forehead is most common,

researchers are considering using other body locations for more convenient alternatives [2].

2.2 Signal Quality

Figure 2.3: Artifacts in one PPG signal [1]
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The quality of the PPG signal depends on the location and the properties of the

subject’s skin at measurement, including the individual skin structure, blood oxygen sat-

uration, blood flow rate, skin temperatures and the measuring environment [1]. These

factors produce several types of additional artifacts that may be included in the PPG sig-

nal. This may affect the extraction of features and thus the overall diagnosis [1]. Fig. 2.3

shows a PPG sample with different artifacts: motion artifacts, muscle artifact, arrhyth-

mia, high frequency artifact, and low amplitude [1]. Fig. 2.4 shows common artifacts as

main challenges in processing the PPG signals: powerline interference, motion artifact,

baseline wandering, low amplitude, and premature ventricular contraction [1].

(a) Powerline and motion artifacts (b) Baseline wandering

(c) Low Amplitude (d) Premature Ventricular Contraction

Figure 2.4: Different artifacts in PPG waveforms [1]

PPG samples can be manually annotated into three groups in a research [3]:
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1. Excellent for diagnosis: PPG signals with salient systolic/diastolic waves and dicrotic

notches.

2. Acceptable for diagnosis: PPG signals where the systolic/diastolic waves and dicrotic

notches are not obvious but heart rate can be determined.

3. Unfit for diagnosis: PPG signals where the heart rate cannot be determined and

neither the systolic/diastolic waves nor the dicrotic notches can be distinguished.

The examples of above categories are shown in Fig. 2.5. The classes of PPG quality in

our work refers to this annotation, but it is slightly different from this one.

Figure 2.5: Annotated PPG qualities [3]

This chapter provides a preliminary background to the properties and characteristics

of PPG signals. The next chapter will cite more papers to introduce different PPG signal

analysis methods.
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Chapter 3

Literature Review

This chapter will explore the literature related to this project. These literatures either

describe the properties of PPG waveforms, introduce the strategies that can be referenced

for signal feature extraction, or recommend methods that work well for classifying signal

quality. Our method is more or less inspired by these literatures.

As shown in Fig. 3.1 in [1], commonly used structure for PPG diagnostic system

consists of three stages: (1) preprocessing stage to emphasise the desired waves; (2) feature

extraction stage to detect the desired waves; (3) classification and diagnosis stage to find

an index or a measure using the extracted features. Our process design basically refers to

these steps.

Figure 3.1: Structure of PPG diagnostic system [1]

Since the rapidly increased applications of portable devices to collect PPG signals,

developing optimal signal quality indices (SQIs) is crucial to classify the signal quality

from these devices [3]. Eight SQIs were calculated and evaluated: perfusion, kurtosis,

skewness, relative power, non-stationarity, zero crossing, entropy, and the matching of
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systolic wave detectors in Elgendi’s work [3]. Here are a few SQIs that we have chosen.

He also annotated the PPG signals as excellent, acceptable, and unfit.

Orphanidou et al. presented a signal quality index (SQI) algorithm which is intended

to evaluate whether reliable heart rates (HRs) can be obtained from electrocardiogram

(ECG) and photoplethysmogram (PPG) signals collected using wearable sensors [4]. The

flowchart of the algorithm is shown in Fig. 3.2. The output of the algorithm is delivered

in a binary format, “good” (i.e., a reliable HR can be derived) and “bad” (i.e., a reliable

HR cannot be derived) to simplify interpretation and facilitate applicability [4].

Figure 3.2: Flowchart of SQI algorithm [4]

Li et al. defined four individual SQIs: direct matching SQI, linear re-sampling SQI,

dynamic time warping SQI, and clipping detection SQI [21]. They used dynamic time

warping (DTW) to stretch each beat to match a running template, and combine it with

several other features related to signal quality, including correlation and the percentage of

clipped beat. The features were then passed to a multi-layer perceptron neural network to

learn the relationships between the parameters in the presence of good- and bad-quality
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pulses [21].

Pradhan et al. selected SQIs as follows: number of peaks by Billauer’s algorithm,

number of zero-crossings, accelerometer features, correlogram features, median noise ratio

per pulse, median relative power per pulse, and standard deviation of Shannon energy per

pulse [22]. There are several SQIs that we have chosen from here. Five classifiers were

evaluated using the annotated dataset. The result shows that Random forest performs the

best, with accuracy of 74.5%. The Decision tree has accuracy of 66.9%, while the other

three classifiers are lower: Naive Bayes 63.6%, Multi-class SVM 43.5%, and k-nearest

neighbour 42.9 % [22]. That is why we choose random forest and decision tree as two of

our classifiers.

This chapter reviews some relevant literature that will be helpful in our system design

in the next chapter.
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Chapter 4

Analysis and Design

In this chapter, we introduce the analysis methods and design ideas to achieve the goals

of PPG signal analysis and classification. The following designs are covered in this chap-

ter: preprocessing of raw data, feature extraction, clustering for semi-automatic quality

labelling, dimensionality reduction for visualisation and classification for automatic la-

belling. The flowchart of these designs is shown in Fig. 4.1.

Figure 4.1: Design of PPG signal analysis and classification
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4.1 Data Preprocessing

The data preprocessing stage is essential and the first step in PPG signal analysis, whether

for clustering or classification. PPG signals are typically collected hundreds or thousands

of times per second and thus too long when it is acquired continuously for tens of hours. To

facilitate analysis, the raw data is split into segments of equal length, and each segment is

treated as a sample. Since the range of data from different patients may vary, normalisation

is applied before segmentation.

4.1.1 Data Segmentation

As discussed above, raw PPG signal is long and difficult to handle directly. Also, the

beginning and end of the data may be affected by the power on/off of the pulse oximeter

hardware or the acquisition process, resulting in distortion and abnormality. To solve

these problems, we trim the head and tail of the signal a few minutes each, and split the

remaining signal into windows of the same length. The trimmed signal is negligible over

the entire signal length, while the signal in each window is long enough to show multiple

pulses (cycles) and is an indicator of signal quality. In subsequent processing, each window

is treated as a sample.

4.1.2 Normalisation

In order to overcome the problem that different patient data may come from different

pulse oximeters and the data range may differ, we normalise the signal after trimming the

head and tail, and then segment it into windows. Instead of using standardisation that

map the original data to zero mean and unit standard deviation, we apply normalisation

(min-max scaling) to preserve the shape of the original signal [23]. The calculation is

xnew =
x− xmin

xmax − xmin
(4.1)

where x is each original data point, xmin = 0 and xmax = 1. The normalised data is

therefore scaled in the range of [0, 1].
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4.2 Feature Extraction

To facilitate PPG quality labelling and classification and also reduce the amount of raw

data, we ”compress” the original PPG signal to extract useful features and discard re-

dundancy. Efficient ways to represent PPG signal windows are to represent them in the

form of Signal Quality Index (SQI) or spectrogram. Both methods are described in detail

below.

4.2.1 Signal Quality Index (SQI)

The shape, trend and quality of a PPG signal can be characterised by different indica-

tors. These characterisations of signal quality are called Signal Quality Indices (SQIs).

Seven SQIs are applied and calculated [3] [24] [25]. The definition and mathematical

representations are listed below:

1. Skewness

Krishnan, Elgendi, et al. found skewness as an effective indicator of corrupted PPG

signals [26] [3]. Skewness is a measure of how much the probability distribution of a real-

valued random variable deviates from the normal distribution [27]. The skewness of an

ideal normal distribution is zero. The probability distribution with its tail on the right side

is a positively skewed distribution, and the one with its tail on the left side is a negatively

skewed distribution [27].

The skewness of a random variable X is the third standardised moment, i.e.

skewness =
1

N

N∑
i=1

(
xi − x̄
sx

)3

(4.2)

where x̄ and sx are the empirical estimate of mean and standard deviation of data point

x respectively, and N is the number of data point in the windowed PPG.
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2. Kurtosis

Kurtosis is a useful indicator for PPG signal quality, discovered by Elgendi, Selvaraj, et

al [3] [28]. Kurtosis is a measure of the ”tailedness” of the probability distribution of

a real-valued random variable [29]. Probability distributions with large kurtosis exhibit

tail data exceeding the tails of the normal distribution, while the ones with low kurtosis

exhibit tails that are less extreme than the tails of the normal distribution [29].

The kurtosis of a random variable X is the fourth standardised moment, defined as

kurtosis =
1

N

N∑
i=1

(
xi − x̄
sx

)4

(4.3)

where x̄ and sx are the empirical estimate of mean and standard deviation of data point

x respectively, and N is the number of data point in the windowed PPG.

3. Signal-to-Noise Ratio (SNR)

Signal-to-Noise Ratio (SNR) is a measure commonly used in communications and signal

processing that compares the level of a desired signal to the level of background noise [30].

There are multiple SNR definitions and here we use the ratio of mean to standard deviation

of a given PPG measurement [25]:

SNR =


0, if σ = 0

µ
σ , otherwise

(4.4)

where µ and σ are the mean and standard deviation of PPG signal respectively. In practice,

mean and standard deviation are calculated in windowed PPG samples.
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4. Zero-Crossing Rate (ZCR)

Zero-Crossing Rate (ZCR) is the rate at which a signal changes from positive to zero to

negative or from negative to zero to positive [3]. ZCR is defined as

ZCR =
1

N

N∑
i=1

I{y(xi) < 0} (4.5)

where y(x) is the filtered PPG signal x of length N . The I{A} is an indicator function

which is equal to 1 if its argument A is true and 0 otherwise.

5. Mean-Crossing Rate (MCR)

The calculation of Mean-Crossing Rate (MCR) is the same as ZCR, while the only differ-

ence is the input y(x) to be replaced by unfiltered (x− x̄), where x̄ is the sample mean of

data x [25].

6. Mean Signal Quality (MSQ)

Mean Signal Quality (MSQ) is introduced by Elgendi [3] since different PPG peak-

detection algorithms are sensitive to different types of noise [31]. The comparison of

how accurate multiple PPG systolic wave detectors isolate each event (such as a beat or

noise artifact) provides an estimate of the level of noise in the PPG [3]. Two systolic wave

detection algorithms were used since both are quick to implement and measures the PPG

signal from different perspectives. One is from the SciPy built-in package, and the other

is Billauer’s algorithm based on local maxima and minima [24] [22]. The matching of the

algorithms is defined as follows:

MSQ =
#(SSciPy ∩ SBillauer)

#(SBillauer)
(4.6)

where SSciPy and SBillauer represents the lists of systolic waves detected by the SciPy and

Billauer’s algorithm [25]. #(A) represents the length of list A, which is the number of

elements in list A. MSQ tracks the agreement between two peak detectors to evaluate



30 Chapter 4

quality of the signal.

7. Perfusion

As Elgendi stated, perfusion is a gold standard for assessing PPG signal quality [3] [32] [33]

[34]. Perfusion Index (PI) is the ratio of the pulsatile blood flow to the non-pulsatile static

blood flow in a patient’s peripheral tissue, such as finger tip, toe, or ear lobe [35]. It is an

indication of the pulse strength at the sensor site: the PPG is a graphical representation

of the perfusion index available in many pulse oximeters [36]. The calculation of perfusion

index is

PI =
ymax(x)− ymin(x)

|x̄|
(4.7)

where x̄ is the sample mean of the raw PPG signal x, and y(x) is the filtered PPG signal.

4.2.2 Spectrogram

The other useful PPG feature extraction method is spectrogram. Spectrogram is a visual

representation of the signal frequency spectrum as it changes with time [37]. A typical

spectrogram of a speech signal waveform is shown in Fig. 4.2. Spectrogram is calculated

by evaluating the short-term discrete Fourier transform [5]. Red areas in the figure show

high intensity.

There are two reasons for choosing spectrogram as a feature representation of PPG

signal. Firstly, spectrogram is a representation of how the frequency components within a

signal vary with time. Since PPG signals of different qualities exhibit significantly different

frequency components at different times, spectrogram is useful for time-frequency analysis.

Secondly, spectrogram is a 2-dimensional representation of 1-dimensional PPG waveform.

Therefore, representing PPG as spectrogram can facilitate input into convolutional neural

network for classification.
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Figure 4.2: Spectrogram of a speech signal waveform [5]

4.3 Semi-Automatic Labelling

The goal of this project is the classification of PPG signal quality, i.e. the automatic

labelling of PPG data windows. Semi-automatic labelling is defined by us as somewhere

between the manual labelling by the observation and the automatic labelling by the classi-

fiers. Since our goal is to eventually classify signals as a supervised learning task, we need

to label the raw data and create a labelled dataset. To label the raw PPG waveforms, we

employ the unsupervised clustering method.

4.3.1 Clustering

Clustering is the task of automatically finding similarities between data points and forming

them into groups called clusters [38]. Here we cluster the windows of PPG based on

similarity, and this similarity is measured using 7 SQIs computed in a 7-dimensional

space. The number of clusters is set to 3, representing 3 qualities as discussed in Chapter

2. According to the possible distribution of the 3 clusters, we choose the k-means clustering

algorithm.
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4.3.2 K-Means

The k-means algorithm clusters data by dividing the samples into k groups of equal vari-

ance and minimising a criterion called inertia or within-cluster sum-of-squares [39]. The

algorithm requires specifying the number of clusters. It scales well to large number of

samples and has been used in a wide range of applications in many different fields [40].

The steps of the k-means algorithm are as follows [40]:

1. Randomly initialise k centroids (the centre of a cluster) in the workspace

2. Assign each data point to the nearest centroid to create k clusters of data points

3. Calculate the means of the data points in each cluster

4. Update the centroids to be the means calculated in step 3

5. Repeat from step 2 to 4 until values converge

Figure 4.3: K-Means clustering on the handwritten digits data [6]

K-means is an iterative algorithm: on each pass it gets closer to the solution and

stops when the solution converges or we ask it to stop. It tries to keep cluster means as
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far apart as possible while keep variation within clusters as small as possible. A typical

result of k-means clustering on the handwritten digits dataset is shown in Fig. 4.3 [6].

After applying k-means to the SQIs of each PPG window, we obtain the class of each

sample. In practice, we use Mini Batch K-Means as a variant of the k-means algorithm

which uses mini-batches to reduce the computation time, while still trying to optimise the

same objective function [41]. A mini-batch is a subset of the input data which is randomly

sampled in each training iteration. These mini-batches greatly reduce the amount of

computation required to converge to a local solution [41].

4.4 Visualisation

Now we have built a labelled dataset through k-means clustering, we would like to see

if the labels are meaningful and what similarities are there between the PPG samples.

The windowed PPG is represented by 7 SQIs, which means that each window is mapped

in a 7-dimensional space, and humans cannot perceive a space higher than 3 dimensions.

Therefore, we use dimensionality reduction techniques to project the data point of each

window in a 2-dimensional space.

4.4.1 Dimensionality Reduction

In this task, each PPG sample is represented by 7 SQIs, i.e. 7 features. It is unlikely

that each feature is equally important for discrimination or classification. Classification

accuracy is usually not proportional to dimension. So we can get similar (or even the

same) classification results with fewer dimensions. Lower dimensionality also reduces

computational demands and enables data visualisation. To visualise the data (and improve

interpretability), we need to reduce data dimensions and preserve data structure [7].

In this step, both linear and nonlinear dimensionality reduction techniques: principal

component analysis (PCA) and autoencoder are introduced.
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4.4.2 Principal Component Analysis (PCA)

Principal Component Analysis (PCA) is a linear dimensionality reduction algorithm using

Singular Value Decomposition (SVD) of the data to project it to a lower dimensional linear

space [42]. The input data is centered but not scaled for each feature before applying the

SVD. PCA is defined as an orthogonal projection of the data onto a lower dimensional

space such that the variance of the projected data is maximised [7]. The dimensions are

determined by current data, making PCA adaptive to current conditions. Some high-

dimensional data projected to 2-dimensional space is illustrated in Fig. 4.4.

Figure 4.4: Projection onto 2-D by PCA [7]

The PCA steps include standardise the data, compute the covariance matrix, calculate

eigenvectors and eigenvalues, select a feature vector, and project data onto principle com-

ponents [7]. In very high-dimensional spaces, Euclidean distances tend to become inflated

(this is an example of the so-called “curse of dimensionality”). “Running a dimensionality

reduction algorithm such as principal component analysis (PCA) before k-means clustering

can alleviate this problem and speed up the computations.” [39].

4.4.3 Autoencoder

Autoencoder is an unsupervised learning technique and a special type of artificial neural

network (ANN) used to learn efficient coding of unlabelled data [8]. The encoding is vali-

dated and refined by trying to regenerate the input from the encoding. The autoencoder
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learns a latent space representation (encoding) for the input data by training the network

to ignore insignificant data such as noise [8]. Therefore, autoencoder is ideal for dimen-

sionality reduction. An autoencoder consists of three parts: encoder (compression), latent

space (coding), and decoder (reconstruction), refer to Fig. 4.5.

Figure 4.5: The structure of autoencoder [8]

Given a dataset of PPG features like SQIs, the autoencoder first encodes a 7-

dimensional sample into a 2-dimensional latent representation, then decodes the latent

representation back to the 7-dimensional sample. The loss function is mean squared error

(MSE) between the input data and output reconstruction. The autoencoder learns to

compress the data while minimising the reconstruction error.

4.5 Automatic Labelling

The ultimate goal of this project is to achieve automatic labelling of PPG quality, when a

dataset with both the input features (SQIs, raw data, spectrograms) and quality outcomes

(classes) are ready. Since the dataset has been labelled, automatic labelling is a kind of

supervised learning aims to determine a function that approximates the given relationships

between the PPG data and quality.
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The classification algorithms we use for comparison are: decision tree, random forest,

AdaBoost and convolutional neural networks (CNN). The input sample of the first three

algorithms is the SQI and the raw signal, and the input sample of CNN is 2-dimensional

spectrogram images. The algorithms are briefly introduced as follows.

4.5.1 Decision Tree

Decision tree is a non-parametric supervised learning method for classification and regres-

sion. The goal of a decision tree is to create a model that predicts the value of a target

variable by learning simple decision rules inferred from the data features [11]. A tree can

be viewed as a piecewise constant approximation [9].

Figure 4.6: A decision tree trained on the iris dataset [9]

A typical decision tree plot is illustrated in Fig. 4.6. In the figure, each node is a test

on the data, each branch is the outcome of the test, each leaf node is a final decision [11].

The root node is a decision that has highest influence in splitting the data. The variables

and outcomes can be repeated.



4.5 Automatic Labelling 37

4.5.2 Random Forest

Random forest is an ensemble learning method for classification that operates by building

multiple decision trees at training time [10]. Ensemble learning combines the predictions

of several base estimators built with a given learning algorithm in order to improve gen-

eralisability/robustness over a single weak estimator [43]. Ensemble learning consists of

two main methods: averaging methods (e.g. random forest) and boosting methods (e.g.

AdaBoost) [43].

Each decision tree in a random forest is built based on different parts of the training

data. The decision trees together vote for an outcome [11]. Training of each node is

performed with only some of the random selected variables, and is called Feature Bag-

ging or Random Subspace Projection [11]. This increases variation in the Trees, reduces

overfitting and increases accuracy. See Fig. 4.7 for a diagram of random forest.

Figure 4.7: A diagram of random forest [10]

4.5.3 AdaBoost

AdaBoost, short for Adaptive Boosting, is a boosting method of ensemble learning. It

generates decision trees (weak learners) sequentially and each new weak learner attempts

to improve on previous classification result, see Fig. 4.8.

The decision trees used in AdaBoost are stumps generated sequentially rather than all
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Figure 4.8: A diagram of boosting [11]

at once. A stump is a decision tree with just a root node and two leaves. Successive stumps

are influenced by previous stumps. The different stumps are generated by weighting the

training data to focus on prior errors. The weights are updated on each training iteration.

Additionally, the output of each decision stump is weighted. So, some decision stumps

have more influence over the output than others [11].

4.5.4 Convolutional Neural Networks (CNN)

The convolutional neural network (CNN) is a neural network in which at least one layer

is a convolutional layer [44]. The neural network is a model that, taking inspiration from

the brain, is composed of layers (at least one of which is hidden) consisting of simple

connected units or neurons (nodes) followed by non-linearities [44]. The non-linearity

comes from the activation function (ReLU, sigmoid, etc.) that takes in the weighted sum

of all of the inputs from the previous layer and then generates and passes an output value

(typically nonlinear) to the next layer [44]. Convolutional neural networks have had great

success in many applications, such as image recognition, image classification, and image

segmentation. A typical CNN architecture is shown in Fig. 4.9.

Convolutional neural networks usually consist of some combination of the following

layers:
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Figure 4.9: Typical Convolutional Neural Networks [12]

1. Convolutional layers. The convolutional layer is a layer in which a convolutional

filter passes along an input matrix. A convolutional filter is a matrix having the

same rank as the input matrix, but a smaller shape. A convolutional layer consists

of a series of convolutional operations, each acting on a different slice of the input

matrix. The convolutional operation has two steps: (1) element-wise multiplication

of the convolutional filter and a slice of an input matrix; (2) summation of all the

values in the resulting product matrix [44].

2. Pooling layers. The pooling layer reduces a matrix (or matrices) created by an ear-

lier convolutional layer to a smaller matrix. Pooling usually involves taking either

the maximum or average value across the pooled area and helps enforce transla-

tional invariance in the input matrix. Pooling for vision applications is known more

formally as spatial pooling. Less formally, pooling is often called sub-sampling or

down-sampling [44].

3. Fully connected layers. The fully connected layer is a hidden layer in which each

node is connected to every node in the subsequent hidden layer. A fully connected

layer is also known as a dense layer [44].

4.6 Summary

Various designs, algorithms, methods, and principles for PPG signal preparation, analysis,

visualisation, and classification have been described above. The next chapter will introduce
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the specific implementation, experiments, results and analysis based on this chapter.
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Experiment and Result

In this chapter, we present the implementation and experiments of the PPG signal anal-

ysis and classification, and the results are summarised and discussed. Specifically, this

chapter is organised in the order of procedures as follows: data preprocessing, feature

extraction, semi-automatic labelling, visualisation, and automatic labelling. Please refer

to the flowchart in Fig. 4.1 for the design.

All data and code for this project are run on a computer with an AMD R7-4800U

8-core 1.8GHz (max 4.2GHz) CPU and a 16GB DDR4-3200MHz memory.

5.1 Data Preprocessing

5.1.1 Dataset

All the data used in this project is from the 01NVa dataset collected from various prospec-

tive clinical studies which have been conducted by the Oxford University Clinical Research

Unit (OUCRU) [15]. These studies have been conducted in healthcare facilities within the

Hospital for Tropical Diseases (HTD) in Ho Chi Minh City, Vietnam. For both the chil-

dren and adult data from 01NVa, we use the adult data and select the PLETH column

of each patient’s waveform sequence over time. PLETH is short for Photoplethysmogram

(PPG).

The raw PPG data and statistics of different adult patients are shown in the Table. 5.1
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Patient number PPG length Time (h) Mean Std Min Max

01NVa-003-2001 5626377 15.628 29698.443 17799.433 0 65535

01NVa-003-2012 5176634 14.379 17115.179 20088.398 0 65535

01NVa-003-2023 1645899 4.571 13441.664 18889.555 0 65535

01NVa-003-2023 2122127 5.894 25176.773 19579.210 0 65535

01NVa-003-2028 878261 2.439 32693.617 15787.726 0 65535

01NVa-003-2103 5297036 14.713 11461.761 17913.632 0 65535

01NVa-003-2104 5027951 13.966 28195.070 17829.383 0 65535

01NVa-003-2109 3896567 10.823 31364.225 16738.005 0 65535

01NVa-003-2110 4404269 12.234 26306.603 18766.272 0 65535

01NVa-003-2110 189207 0.525 20162.520 19859.245 0 65535

01NVa-003-2162 5464398 15.178 28381.130 18558.764 0 65535

Table 5.1: 01NVa PPG dataset and statistics of some adult patients

(some patients have multiple PPG recordings). The raw PPG waveform is sampled 100

times per second (sampling rate fs = 100), the minimum value is 0, and the maximum

value is 65535. The reason for the apparent difference in means and standard deviations

is that the length of the zero signal varies in different patient data.

5.1.2 Data Preparation

The quality of the raw PPG signal can be roughly divided into four categories, as dis-

played in Fig. 5.1: excellent (Fig. 5.1a), acceptable (Fig. 5.1b), unfit (Fig. 5.1c), and zero

(Fig. 5.1d).

To simplify the classification, excellent and acceptable waveforms are collectively re-

ferred to as good waveforms, since we can detect the patient’s pulse within these two.

Then the three waveforms are categorised as: good, unfit, and zero.

In order to improve the generalisation of the model while avoiding the increase of

computational time due to the large amount of data, we use the data of 4 patients (01NVa-

003-2001, 2012, 2103, and 2104) and concatenate them together after preprocessing.

The PPG data for each patient are trimmed 5 minutes from head and tail, and the

remaining data are min-max normalised to [0, 1] (see Chapter 4.1). In order to make the

signal quality of each window as uniform as possible, the normalised data are truncated

into 10-second windows. Each window has 1000 magnitude numbers.
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Figure 5.1: Classes of PPG waveform

After calculation, the number of data samples (windows) of the 4 patients are 5567,

5117, 5238, and 4968. The total number of samples is therefore 5567+5117+5238+4968 =

20890 windows.

5.2 Feature Extraction

5.2.1 Signal Quality Index (SQI)

The calculation methods of SQIs are shown in Chapter 4.2.1. Note that we need to replace

the inf entries in perfusion index with a specified number 100, since perfusion of zero data

is infinity. We choose 100 because this is a value that exceeds the normal perfusion range,

and will not affect the accuracy of subsequent clustering if it is too large.
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The resulting SQI feature is a 20890× 7 matrix.

5.2.2 Spectrogram

In this section of spectrogram generation, we use a Tukey window with 1/8 of a window’s

length overlap at each end, and the size of an output spectrogram is 129× 4.

Three spectrogram examples of good, unfit and zero waveforms are shown in Fig. 5.2.

As can be seen from the figures, the high frequency components are all 0 and dark. Since

most of the frequency entries of the spectrograms are 0 (very sparse) from 21 to 129, the

spectrograms are all cropped to 20× 4 size.

(a) Good spectrogram (b) Unfit spectrogram (c) Zero spectrogram

Figure 5.2: Classes of PPG spectrogram

The resulting spectrogram feature is a 20890× 20× 4 n-dimensional array.

5.3 Semi-Automatic Labelling

The aim of semi-automatic labelling is to generate quality labels (0, 1, 2) for the windowed

PPG dataset. We cluster the windows based on similarity measured using 7 SQIs. We

employ the Mini-Batch K-Means clustering algorithm which is much faster than vanilla k-

means [41] [45]. The settings of maximum number of iterations over the complete dataset

is 400, the batch size is 2048, the number of random initialisation is 3, and the random

state is 42.

The number of each quality label after applying the mini-batch k-means clustering

is listed in Table. 5.2. The clustering results are stable and unchanged in multiple trials.
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These labels will serve as the ground truth of windowed PPG dataset for subsequent

visualisation and classification.

Label 2 1 0

Quality Good Zero Unfit

Number 9906 7076 3908

Table 5.2: Result of semi-automatic labelling

5.4 Visualisation

The 7-dimensional SQI features of each PPG sample are projected to 2 dimensions, im-

plemented by PCA and autoencoders. By using clustering in the 2-dimensional space, we

can intuitively see how the PPG samples are distributed.

5.4.1 Principal Component Analysis (PCA)

Figure 5.3: SQI features dimensionality reduced by PCA and clustered by mini-batch
k-means

The 7-dimensional SQI features are first projected to 2-dimensional space through

PCA, and then clustered into 3 clusters by mini-batch k-means. See the visualisation in

2-D in Fig. 5.3. The good PPG samples are the yellow points at about (-33, 0). Zero

samples are the blue points at (65.327, -0.461). Unfit samples are the purple points near
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the yellow points. The labelling result is: (Good: 10936, Zero: 7076, Unfit: 2878). We can

see the clustering of zero samples is accurate, while good and unfit are somewhat different

from the ground truth. The results of PCA dimensionality reduction method are stable

and remain unchanged in different trials.

5.4.2 Autoencoder

The model and hyperparameter settings of the autoencoder is shown in Table. 5.3. The

first row of the table is abbreviated: output shape of encoder dense layers (Encoder),

activation function (Activation), learning rate (LR), epoch (Epoch), batch size (Batch),

optimiser (Optimiser), loss function (Loss). The encoder and decoder are symmetric in

layer outputs to generate latent space representations in the middle. The validation split

is 10% of the total dataset.

Encoder Activation LR Epoch Batch Optimiser Loss

[20, 14, 8, 5, 2] ReLU 1e-3 20 128 Adam MSE

Table 5.3: Autoencoder settings

Figure 5.4: Training and validation accuracy and loss curves of the autoencoder

The architecture of the autoencoder model is shown in Fig. A.1 in Appendix A. The

7-dimensional SQI features are first projected to 2-dimensional space by the autoencoder,

and then clustered into 3 clusters by mini-batch k-means. The training and validation
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accuracy and loss curves of the autoencoder is in Fig. 5.4. It can be seen from the figure

that the training results converge quickly, but in most trials, the autoencoder does not

converge well. Autoencoder is very hard to tune, train, and converge.

The 2-D visualisation is in Fig. 5.5. The good PPG samples are the purple dots

at about (2, 0). Zero samples are the blue dots at (105.125, 6.918). Unfit samples are

the yellow dots next to the purple dots. The labelling result of mini-batch k-means is:

(Good: 7132, Zero: 7077, Unfit: 6681). The labelling of zero samples is accurate, while

the prediction results of good and unfit deviate more from the ground truth than PCA.

The clustering result is always changing and unstable.

Figure 5.5: SQI features dimensionality reduced by autoencoder and clustered by mini-
batch k-means

5.4.3 Discussion

The 2-D visualisations for both PCA and autoencoder are always close to a straight

line, which means that one SQI may play a leading role among the seven SQIs in the

classification of signal quality.

In the clustering results, the zero signal samples are the most obvious ones: all clus-

tered together. Good samples are also concentrated, but unfit samples are relatively

scattered next to the good ones. A few outliers far from the good samples should be

clustered into unfit and actually clustered into the zero class. The clustering of zero is the
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most accurate, while good and unfit are quite different from the ground truth. The reason

is that in the previous step of semi-automatic labelling, outliers were incorrectly labelled

as zero samples.

5.5 Automatic Labelling

Automatic labelling is a classification problem of supervised learning, trying to find the

correspondence between unknown PPG samples and quality labels. We will experiment

with each of the four classifiers: decision tree, random forest, AdaBoost and convolutional

neural networks (CNN).

5.5.1 Decision tree, Random forest, and AdaBoost

In order to avoid the particularity of single test results, 10 trials were performed on the

SQI and raw PPG data. The decision tree [9], random forest and AdaBoost classification

algorithms were tested respectively. For the random forest, the number of trees in the forest

is 100, and the bootstrap method is used when building trees [43]. For the AdaBoost, the

maximum number of estimators at which boosting is terminated is 50, and the weight

applied to each classifier at each boosting iteration is 1.0 [46]. In each trial, 25% of the

data were randomly sampled from the dataset as the test set. The average accuracy on

10 trials of the three classifiers on the test set is shown in Table. 5.4.

Input data Decision tree Random forest AdaBoost

Raw PPG signal 0.8422 0.9151 0.7436

SQI 1.0 1.0 1.0

Table 5.4: Accuracy of 3 classifiers on raw PPG signal and SQI

All three classifiers performed perfectly on the SQI data with 100% accuracy, since

the SQI itself is the source of the labelled clustering of the windowed PPG data. A decision

tree on the SQI data is shown in Fig. 5.6

Random forest is composed of 100 decision trees, so its accuracy rate is higher than

decision tree. AdaBoost has the lowest accuracy; therefore, is not suitable for this task.
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Figure 5.6: Decision tree performed on SQI features

The raw data has not been feature extracted and/or dimensionality reduced, so the amount

of data is too large, and the calculation time is very long, more than 15 minutes.

5.5.2 Convolutional Neural Networks (CNN)

The CNN is designed to be a sequential model with 3 convolutional layers, 1 max pooling

layer, 1 flatten layer, and 2 dense layers. The 3 × 3 convolutional filters are applied on

input of 20 × 4 spectrograms. The model architecture is shown in Fig. A.2 in Appendix

A. The activation function of all the layers are ReLU, except for the last dense layer to be

softmax activated.

The number of epochs is 100, and batch size is 32 or 256 in two trials. Other hyper-

parameter settings are in Table. 5.5. The test split is 0.3, and validation split is 0.15. The

accuracy and loss for training and validation is shown in Fig. 5.7 for batch size = 32, and

shown in Fig. 5.8 for batch size = 256.

Activation LR Epoch Batch Optimiser Loss

ReLU & Softmax 1e-3 100 32, 256 Adam Cross Entropy

Table 5.5: CNN settings

Larger batch size can speed up training: the training time is 2s 6ms/step for 32,
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Figure 5.7: CNN training and validation accuracy and loss (batch size = 32)

Figure 5.8: CNN training and validation accuracy and loss (batch size = 256)

and 1s 21ms/step for 256. The smaller the batch size, the greater the difference between

training and validation accuracy and loss, the greater the fluctuation, and the model tend

to overfit the training set.

The test accuracy and loss is listed in Table. 5.6. As the result shows, the smaller the

batch size, the higher the accuracy.

5.5.3 Discussion

The accuracy of CNN classifier is slightly higher than that of decision trees and lower than

that of random forest. The time taken by CNN to classify spectrograms is much lower
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Batch size Accuracy Loss

32 0.86708 0.30515

256 0.85352 0.28692

Table 5.6: Test accuracy and loss of CNN on PPG spectrogram

than that of random forest to classify raw data.

Classification using SQIs is 100% accurate in this experiment but the SQIs must be

selected and defined properly in advance for classification input. If the SQIs used for

semi-automatic labelling is different from the SQIs used for classification, it is likely to

reduce the accuracy of automatic labelling. CNN is the recommended classifier because it

has high accuracy, does not depend on SQIs, and the computation of the spectrogram is

neither difficult nor time-consuming.

5.6 Summary

This chapter contains all experiments, results and discussions. The next chapter will cover

conclusions and possible future work.
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Conclusion and Future Work

6.1 Conclusions

1. Carefully chosen SQIs are effective PPG features that facilitate quality labelling and

dimensionality reduction.

2. The spectrogram is also an effective PPG feature, and the CNN classifier has good

stability, good flexibility, high accuracy and fast speed to be an ideal PPG signal

quality classification method.

3. The classification accuracy of random forest is higher than that of decision tree and

AdaBoost, but it is slow to calculate on raw data without feature extractions.

4. For raw PPG waveform without labels, it is ideal to label with SQIs. For labelled

PPG datasets, computing the spectrogram and using CNN for classification is pre-

ferred.

6.2 Future Work

1. Continue the search on finding the most effective SQIs/features for measuring PPG

quality. Try to get rid of some SQIs that do not measure quality well.

2. Explore more advanced time-series clustering algorithms.
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3. Try to represent the PPG signal quality in continuous scores, and the classification

problem becomes a regression problem.

4. Real-time PPG quality analysis methods on wearable devices can be studied.
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Figure A.1: Autoencoder model
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Figure A.2: CNN model
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