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Abstract

Dengue is a mosquito-born virus that can cause a range of complications to those affected;

ranging from skin rashes to even death. With no effective treatment currently available and

vaccines that can have serious side effects, the virus is a major risk to human lives. Detecting

and predicting a severe case of Dengue can be the turning point in the Dengue epidemic manage-

ment, increasing survival rates of patients experiencing Dengue shock and improving healthcare

facility processes. Using wearable photoplethysmography devices, which are cost effective and

user-friendly, patients’ vital parameters can be continuously monitored and analysed, allowing

for the recognition of patterns that may lead to the development of Dengue detection and pre-

diction algorithms. This study will focus on the utilisation of photoplethysmography signals

for the exploration, design and implementation of supervised machine learning models for the

classification of Dengue patients’ records, based on clinically recorded physiological parameters.

Signal and data processing techniques will be utilised, leading up to the definition of evaluative

experiments and model development. From design and implementation to testing and evalua-

tion, we will be presenting our findings in the following exploratory report, examining a recently

formed PPG dataset.
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Chapter 1

Introduction

1.1 Motivation for Study

Dengue is a virus transmitted to humans through bites of infected female mosquitoes and can

cause a range of complications, including death, to those affected. While cases are more common

in areas with hot and humid climates, it is estimated that mosquitoes carrying the virus exist

in over 100 countries, affecting over 3 billion people [40]. Annually, there are approximately 400

million infections recorded, with a quarter of those people falling sick and around 22 thousand

of them dying from severe infection [14]. Due to the nature of the virus, which has 4 serotypes, a

human can get infected up to 4 times, deeming immunity a difficult task. Even though a vaccine

is available, it is only safe to administer it to people who have already contracted the virus once,

else it could result in the development of severe dengue. Up to date, no targeted treatment

is available but fortunately, an early clinical evaluation and detection of severe dengue can

cause the rate of fatalities to drop significantly [40][14]. Due to that, the motivation behind the

study arises from the need to control infections and most importantly devise a way to monitor

and manage epidemics in ways that we can provide clinical decision support; improving care

processes.

Photoplethysmography (PPG) uses optical sensors, e.g. photo diodes, and pulses of light emit-

ted from a light source, e.g. a light-emitting diode (LED), to detect and monitor vital sign

1



2 Chapter 1. Introduction

parameters such as heart rate and blood pressure [50]. This is done through the detection of

blood volume alterations, measuring and recording changes in the absorption of light through

the tissue on measuring sites [2]. Some of these sites include, but are not limited to, the fin-

gertips and the wrist. Waveforms that are recorded can then be analysed locally on wearable

devices, or on the cloud, to extract useful features that can be used in a range of clinical

applications. The fact that PPG is an inexpensive means of recording vital sign parameters

continuously and non-invasively, makes it a paramount component in the management of the

various conditions. In conjunction with advancements in computing, this can enable large-scale

monitoring of humans infected with the dengue virus, even in low-income countries with few

resources. It is vital that medical centres and hospitals know when a patient is likely to de-

velop severe symptoms of dengue in order to proactively accommodate for the patient’s needs

and treatment plans, but also manage the logistics associated with a person requiring medical

attention [32].

Lastly, it should be noted that it is the first time that a dataset of the form we are to explore has

been collected and as a result, it is particularly interesting to evaluate the relationship between

PPG signals and dengue patients’ physiological parameters. Since this is the first study of this

kind, its novelty is incontrovertible.

1.2 Project Objectives

In the bigger picture, the objective of this project is to explore the relationship between dengue

patients’ physiological parameters and PPG signals. Particularly, the focus falls onto severe

dengue cases, as establishing a link between those and PPG, can possibly transform the future

of epidemic management and reduce the toll of human lives. To achieve that, signal analysis and

machine learning (ML) techniques will be employed. These will be used to facilitate the creation

of classification and regression experiments that will test PPG’s capacity in characterising

patients’ physiological parameters.

The first step in the process involves the exploration of the dataset that will be used in the
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experiments. As it is newly formed, a lot of data structuring and debugging is required. Once a

clear structure is defined and raw data is processed for usability in later processing steps, we can

continue with matching clinical events to recorded PPG signal instances. PPG signal denoising

will follow, ensuring that no important signal components are removed. We can then proceed

in calculating signal quality indexes so that we can knowingly select the best part of each signal

to be used for the extraction of features. In the extraction stage, we are aiming to process PPG

signal data to enhance data representation and boost performance in the ML algorithms that

follow. Lastly, a set of experiments will be defined, which will help us in assessing the link

between PPG data and dengue patients’ physiological parameters, focusing on severity. For

example, can we detect a shock if we are only given just a PPG signal segment of a patient? In

each experiment, a defined set of supervised ML algorithms will be employed, along with some

extra processing steps, to assess PPG’s eligibility for use in clinical decision support for dengue.

Information on the ML modelling performance on the specific dataset will also be extracted

and compared, using standard metrics. Informed decisions and precise execution of all steps in

the process is of utmost importance to reach this project’s milestones. Successful exploration

of the aforementioned steps will flag this study as successful. Limitations and obstacles are

expected throughout the process, given that the dataset is new and raw. It is important that

our findings are useful for future research in the domain.

Agile practices were employed for the project’s management, adjusted to fit the purpose.

Weekly supervisor meetings and progress updates were carried out and work has been con-

sistent. For the specific timeline followed, please refer to the Gantt chart in Appendix B. Code

listings and example documentation links are available in Appendix A.



Chapter 2

Background Theory and Related Work

2.1 Dengue Virus

Dengue virus belongs to the Flaviviridae family and affects humans on a global scale, with some

serious implications in both human health and healthcare management [34]. Dengue epidemics

can severely disrupt the normal function of healthcare systems around the globe, especially

during rainy seasons [40]. In many cases, symptoms of dengue can be mild, with patients

experiencing headaches, muscle and joint pains, as well as moderate to high fever. However,

in some cases more severe reactions to the infection are recorded, with patients developing

Dengue Hemorrhagic Fever (DHF) or Dengue Shock Syndrome (DSS), which can be fatal [14].

DHF is usually associated with continuous vomiting, bleeding in the gastrointestinal tract and

mouth, hematuria, as well as water build up in the lungs and the abdominal cavities [36][21][18].

DSS is an even more severe form of the infection, with patients experiencing dangerously low

blood pressure, fast heart rate and circulatory disruptions, amongst other serious symptoms

which result in a fatality rate of 2.5% [36][21]. Through literature, there are multiple sets of

symptoms that can define severe dengue. Oxford University clinical Research Unit (OUCRU) in

Vietnam’s Hospital for Tropical Diseases (HTD), in partnership with Imperial College London,

have created documentation accompanying their dengue dataset collections [21]. For this study,

the severe dengue features that will be incorporated in our experiments will be sourced from

4



2.2. Photoplethysmography 5

this documentation, as we will be using their dataset. In Table 2.1 a summary of these Features

is presented, as sourced from the dataset’s documentation [21].

Outcome Features

Severe Dengue Shock Shock i.e. Drop in Pulse Pressure etc.

Severe Dengue Leakage

Ascites
Overload
Pulmonary Oedema
Respiratory Distress
Ventilation Required
Diuretics

Sever Dengue Bleeding
Gastrointestinal Bleeding *
Hematuria*
Severe Bleeding

Severe Dengue
Organ Impairment

Central Nervous System (CNS) Abnormality *
Liver Abnormality *
Kidney Abnormalilty *

Table 2.1: Overview of Features Defining Severe Dengue. Asterisks suggest that the Presented
Feature is a Compound of Other Physiological Features. (Table Sourced From [21])

An up-to-date clinical review of the advances in dengue research by Herencia, J. S. S., indicates

that no antiviral treatment is yet available for dengue and symptoms can only be managed

through already known practices, such as admission of fluids and ”nasal continuous positive

airway pressure” [20][46]. This comes to complement past studies, emphasising the importance

of accurate diagnosis in managing epidemics. Wiwanitkit, V. in particular, highlights that the

key to proper patient care stems from a timely diagnosis [65].

2.2 Photoplethysmography

As presented in Chapter 1, PPG devices are predominantly inexpensive, easy to use and effec-

tive in vital sign monitoring and recording. In Figure 2.1, a simplified schematic on how the

PPG works is presented, along with a sample waveform output showing systolic and diastolic

peaks and the dicrotic notch [10]. Using pulse analysis, e.g. peak and trough detection algo-

rithms, PPG can be used to measure heart rate, blood pressure, oxygen saturation in the blood,

respiratory rate, and temperature. More advanced processing can be used for the measurement

of other vitals, such as blood pressure and hematocrit levels. As presented in a recent study
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Figure 2.1: Different Finger Setups of the PPG Light Emitting Diodes and Photodetectors,
along with a Sample PPG Waveform.(Image Sourced from [10])

by Castaneda et al., PPG has the potential to aid in the diagnosis of a range of cardiovas-

cular diseases, such as arteriosclerosis [9]. In the same report, it is emphasised that advances

in wireless communication and wearable technologies will push the scientific community into

researching more applications for PPG in clinical decision support, aiding in early diagnosis of

various illnesses and conditions [43][9].

Different types of light sources can be used for PPG and depending on the application, a

combination of them can be employed [9]. The most common light sources include red LEDs,

green LEDs and infrared (IR) LEDs [2][9]. The different wavelengths can enable measurement

at different depths of the tissue as Lindberg L.G. et al. suggested in 1991 [28]. More recent

studies suggest that the use of green LEDs results in deep tissue penetration, as well as more

accurate measurements [9]. However, IR LEDs result in the deepest penetration and return

more energy on the photodetector, deeming them ideal for taking measurements on denser body

areas i.e. the muscle [9][61]. Unfortunately, IR may also transmit more noise [61]. The PPG

signal, also called Pleth, is essentially the detected photodetector signal, through some filtering

[33]. The Pleth signal is made up of both AC and DC components arising from changes in

blood volume in the arteries, light absorption in the tissue, respiratory activity, temperature

and other functions of the nervous system [9]. Even though the DC component holds useful
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information about physiological parameters, AC component frequencies between the range of

0.5 − 4 Hz are usually of most concern during analysis [33]. However, no study has been

found that defined the frequency bands present in a PPG signal and what each characterised

physiologically.

2.3 PPG Signal Processing

Signal processing applications are vital in improving the quality of signals, rejecting redundant

components and extracting useful information that can be used as is, or in further analysis. In

our study, signal processing will be used with PPG to enable the successful completion of the

experiments by removing noise, describing the signal quality of patient records and extracting

features that can be used in characterising the signal in more depth. In short, signal processing

is the link between the raw, clinical and PPG data and our ML algorithms.

2.3.1 Filtering of PPG Signals

Filtering PPG signals is an important first step in removing unwanted signal components.

Through it, we can remove extrinsic and intrinsic noise. The former relates more to noise from

the surrounding environment such as ambient light interference, whereas the latter refers to

noise such as motion artefacts. An excellent research article published in 2018 by Liang. Y. et al.,

provides a thorough review of 9 different filter types with 10 orders each, as applied onto PPG

signals [27]. Using the skewness quality index for their evaluation, the report stated that

Chebyshev II filter type of order 4, outperformed other filters. Along with the Chebyshev II,

the Butteworth filter also performed exceptionally well and it can be considered as the ”Gold

standard” [27]. For both of the aforementioned filters, low orders are adequate in achieving

good performance [27]. In general, the Butterworth filter is more widely adopted for PPG fil-

tering and is suggested in multiple other papers, such as that of Nilsson. L. et al. [37]. Other

more complex methods of noise reduction, i.e. using cluster analysis, do exist in research, but

their application was outside the scope of this project [62].
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For completeness, it should be noted that the Butterworth filter, introduced in 1930 byButterw−

orth S., is an infinite impulse response filter, which offers a fast and effective roll-off at the cut-

off frequency depending on the filter’s order, it has a non-linear phase response and a monotonic

frequency response [8].

As discussed earlier, no specific PPG frequency ranges are explicitly defined for use in clinical

applications. While in some cases, 0.5 − 4 Hz is suggested to hold enough information for

analysis, Waugh W. et al. express that the 0.15 − 20 Hz range can be useful in analysis

[33][62]. Motion artefact noise overlaps with the PPG signal in all of those ranges and therefore,

the frequency filtering process can be abstract and application dependent. Rejection of low

frequencies (< 1 Hz) will have a larger effect on the DC component of the PPG [62].

2.3.2 Signal Quality Indexes

Signal quality indexes (SQIs) are derived from the mathematical analysis of raw and filtered

PPG signals. They can allow for the rejection of segments, or the whole signal, if the resulting

indexes indicate a pour quality signal. This process can be used to complement prior filtering

steps and give us a better insight on the quality of signals. Interesting research exists, trying to

establish threshold boundaries for various calculated SQIs. For example, Elgendi M. presented

a clear process on annotating and assessing PPG signals by calculating indexes of skewness,

perfusion, kurtosis, entropy, zero crossing rate, signal-to-noise ratio, matching of systolic peaks

using two different peak detectors and relative power [12]. While the article was completed

successfully, highlighting skewness as one of the best SQIs, limitations do exists which can

affect our interpretation of the results and how we apply the knowledge to our project. More

specifically, since Elgendi M.’s report was only examining healthy subjects, SQIs for diseases

subjects might vary significantly ”due to the nature of the arrhythmic signals and the associ-

ated morphology changes” in unhealthy PPG datasets [12]. As the scope of this project does

encapsulate the evaluation of SQI methods, their implementation will be carried out to aid

other signal processing stages.

Software libraries were also created for the exploration of SQIs and can be applied onto PPG.
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For example, the vital − sqi library, available for Python, provides tools for ECG and PPG

signal quality indexing and aids in the creation of quality check pipelines [22]. While parts

of this package can be used for our study, it can also be used as a reference for our SQI

implementations.

2.3.3 PPG Feature Extraction

Feature extraction (FE) is an important step in PPG pre-processing, allowing us to enhance the

descriptive profile of our dataset. While there is not a single approach to this, previous studies

give us some insight on approaches that worked on a variety of applications. Sarma D. et al.

converted physiological clinical variables into numerical values i.e. high fever was labelled as

2, medium fever was labelled as 1 and no fever was labelled as 0 [49]. Vectors consisting of

multiple of these clinical variables may be formed, describing instances or periods of time.

However, such approach may be computationally very demanding and practically inefficient, if

continuous data is required. Gotlibovych I. et al. experimented with raw PPG data, directly

inputted into classification algorithms to detect ”Atrial Fibrillation” [17]. This proved to be an

effective method, which outperformed earlier studies using specially engineered features [17].

Other studies may choose to use a combination of features, forming complex multi-variate

feature vectors. Of course, this can result in an increasingly complex task, which not only can

prohibit the use in real time scenarios but would also require more complex algorithms during

modelling.

2.3.3.1 Time-Frequency Analysis of PPG Signals

A FE approach which can be computationally inexpensive to implement, depending on the

algorithm, is the extraction of time-frequency characteristics of a PPG signal. Studies by

Wijshoff R. W. C. G. R. et al., Allen J. et al., Tjahjadi H. et al., are only a few of the

example papers using time-frequency analysis for PPG FE [63][3][58]. No specific methodol-

ogy in performing the time-frequency analysis is prevalent but Continuous Wavelet Transforms
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(CWT) and Short-time Fourier Transforms (STFT) seem to be the preferred methods of trans-

forming a signal from the time domain into the time-frequency domain. Wavelet transforms

work by shifting and scaling a so-called ”Mother” wavelet over a signal at different frequencies.

This process is carried out by the CWT and can be visualised using a scalogram [64]. STFT

works by splitting the signal into smaller windows over time and uses the Fourier transform to

calculate their frequency profile. These windows can then be used to construct the spectrogram,

displaying frequency magnitudes over time. The main difference between CWT and STFT, is

that the latter has a fixed time-frequency resolution in all frequencies, whereas the wavelet

transform has a varying resolution due to it’s shift and scale approach. Figure 2.2 shows this

relationship. To implement these time-frequency analyses, the Discrete STFT (DSTFT) and

Discrete Wavelet Transforms (DWT) are used [60]. For completeness, Equations 2.1 and 2.2

express STFT and CWT mathematically [64][52].

Xl(ω) =
∞∑

n=−∞
x(n)w(n− lH)e−jωn (2.1)

where:

Xl = DSTFT of Windowed Data

x(n) = Input Signal

w(n) = Window Function e.g. Hamming of Length L

H = Hop Size i.e. Frame Size Divided by the Overlap Factor

cwt(τ, s) =
1√
|s|

∫ +∞

−∞
x(t)ψ

(
t− τ
s

)
dt (2.2)

where:

τ = Translation Factor

s = Scale

ψ(t) = Mother Wavelet Function

t−τ
s

= Scale Factor
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Figure 2.2: Time-frequency representation STFT Spectrogram (left) and Wavelet Transform
Scalogram (right). (Image Sourced from [41])

Our study is exploring a novel topic in dengue clinical decision support using PPG and hence,

there is no past reference as to which FE method is most effective. Therefore, while wavelet

transforms can be more descriptive, they may result in a more complex feature space with

higher dimensionality. Thus, STFT can be a preferred starting point.

2.4 Machine Learning and Modelling

2.4.1 ML for PPG and Dengue

Machine Learning is used extensively in many PPG applications, taking advantage of the va-

riety of powerful algorithms, both supervised and unsupervised, to carry out tasks of pattern

recognition, classification and regression. As it is the first time our study’s problem statement

has been looked upon, no existing results are available for direct comparisons to be made. More-

over, a successfully implemented data processing and modelling pipeline in a similar project

does not guarantee success in ours. Therefore, while we can use our knowledge and research to

make informed decisions, our project is highly exploratory.

A large number of studies have implemented ML algorithms using PPG derived feature vectors,

to model a range of clinical decision processes. Studies by Tadesse G. A. et al., Y u C. et al.,

Reiss A. et al., Allen J. et al., Gotlibovych I. et al. and Shobitha S. et al. have imple-
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mented both simplistic and complex ML algorithms for the evaluation, detection and pre-

diction of physiological parameters in a clinical environment; either associated with disease

or calculated for better diagnostic insights i.e. blood glucose prediction [57][66][47][3][51]. In

Tadesse G. A. et al.’s study, transfer learning models, utilising deep Convolutional Neural Net-

works (CNN), improved PPG performance in detecting Tetanus infection severity by ”at least

12%” compared to support vector machine algorithms [57]. Allen J. et al. research also employs

transfer learning methods, using the AlexNet CNN architecture, allowing for arterial disease

detection with accuracies of 88.9% [47]. Gotlibovych I. et al. have implemented CNN networks

in tandem with Long Short-term Memory (LSTM) networks to detect atrial fibrillation using

raw PPG signals, resulting in very high area under ROC curve of 0.9999 [3]. Reiss A. et al.

concluded that CNNs were able to outperform other studies in heart rate estimation, using

time-frequency representations of PPG data [47]. Finally, support vector machine and rele-

vance vector machine algorithms were implemented by Y u C. et al. and Shobitha S. et al.

respectively [66][51]. In the former, heart rate identification was explored with a resulting

misclassification rate of just 8%. In the latter, blood glucose level predictions were evaluated,

with relevance vector machines outperforming the decision tree baseline model with a difference

of 0.196 in the kappa score. In many of the explored studies, deep learning approaches out-

performed shallow learning algorithms; without implying that the shallow algorithms did not

perform well enough. However, as CNNs proved to be powerful enough when handling PPG

data, it suggests that they are worth exploring.

Interestingly, a complex algorithm already approved by the FDA exists, utilising machine learn-

ing to calculate the Compensatory Reserve Index, using PPG [35]. The Compensatory Reserved

Index has been particularly successful in detecting haemorrhage, which can be a symptom of se-

vere dengue and thus may prove to be an important tool in the dengue epidemic management.

However, this tool is only available from ”Flashback Technologies”. Due to this monopoly,

it can be expensive to purchase and apply onto the mass population. After all, one of the

incentives of using PPG is its low cost and prompt availability.

Research also exists on ML modelling in the dengue clinical decision support domain in general.

While many of these studies are not utilising PPG, the approaches followed can definitely
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be useful to look at when deciding on the methodology to apply in our study; but cannot

really be used as reference for our ML models. This is because we are focusing on exploring

PPG data. Nevertheless, two studies exist which piqued our intellectual curiosity. One is

by Nguyen T. H. et al., using Artificial Neural Networks (ANNs) and other ML models, to

associate symptoms of ascites and narrow pulse pressure to predict a ”recurrent shock” in

dengue patients[24]. While the results are relatively poor (”Area Under Curve of 0.73”), the

methodology followed can be useful. The second study, by Lam P. K. et al. aimed to predict

DSS in a dataset of children, using data from blood tests [26]. The study utilised a relatively

simple logistic regression algorithm, achieving accuracies of 81%. Explicit comparisons cannot

be made with the two aforementioned studies, as one focuses on recurrent DSS instances and

the other study explores DSS on a dataset of children; whereas we look for a more general link

between PPG and severe dengue parameters, focusing on adult data. However, we can use the

results of these two studies as a reference point for when we are trying to evaluate and establish

a relationship between PPG and severe dengue.

2.4.2 Principal Component Analysis

Principal Component Analysis (PCA) is a technique used to reduce the dimensionality of data

and can be implemented for FE, visualisation and compression purposes. Used commonly

in ML to reduce the complexity of feature vectors inputted to a model, PCA can result in

better model performance. It does that by projecting data, in our case a feature vector, into

its principal components. Principal components are chosen so that the projected data has a

maximised variance. These principal components are derived from the covariance matrix of the

data, extracted using the singular value decomposition. Once the covariance matrix is found, its

eigenvectors and eigenvalues are calculated. Figure 2.3, sourced from [31], illustrates a summary

of the procedure for a 2-dimensional example. The eigenvector circled in red, corresponding to

the eigenvalue with the largest magnitude, is the first principle component. The one circled in

green corresponds to the second principal component. On the left plot in the figure, you can

see the original data along with the plotted eigenvectors, where red corresponds to the first
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principal component, and green corresponds to the second principal component. By a simple

matrix multiplication illustrated on Equation 2.3, you can see how we can use the first principle

component to transform the observed 2-dimensional data onto 1-dimension [31]. This will cause

less sparsity between the features of a dataset, which can allow for ML algorithms to perform

better, with less computational resources and complexity.

Figure 2.3: Example of Principal Component Analysis on 2D Data. Red - First Principal
Component, Green - Second Principal Component. (Image Sourced from [31])

x̃n = u>1 xn (2.3)

where:

x̃n = Transformed Dataset of 1 Dimension

u>1 = Transpose of 1st Principal Component

xn = Original Dataset of 2 Dimensions

2.4.3 Artificial Neural Networks

Multi-layer perceptron (MLP) models, most commonly referred to as ANNs, are derived from

the single perceptron model and belong to the category of supervised ML algorithms. An
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MLP architecture is illustrated in Figure 2.4, where each circle represents a ”neuron” i.e.

Threshold Logic Unit, and each column of circles represent a layer [5]. Each ”neuron”, holds

an activation function, where the input is mapped to an output, through a defined function,

i.e. sigmoid. An MLP consists of an input layer, a number of hidden layers (for non-linearity)

and an output layer. These are fully connected using weighted connections, whose values are

adjusted during training. For classification, the SoftMax function is commonly included in

the output ”neurons”, returning output class probabilities. Learning is made possible with the

use of the backpropagation algorithm, a loss function (e.g. categorical cross-entropy), and an

optimizer (e.g. Stochastic Gradient Descent). At first, the inputs are fed through the MLP,

usually with randomly initialised weights. Then, the loss function is responsible for calculating

the loss between the predicted output and the actual labels of classes. The backpropagation

algorithm is then employed, going back through the network to calculate the contribution of

each layer’s connection to the loss value. The optimizer then calculates the loss gradient and

uses it to adjust the layer connection weights. The feed-forward, backpropagation and gradient

calculation steps are repeated, aiming for a gradient that is close or equal to zero; suggesting

that the model has converged to an optimum, or a near-optimum. The number of repetitions

is specified by the number of epochs, and the number of training inputs used in learning is

specified by the batch size. [15][4]

Figure 2.4: ANN Architecture Overview. (Image Sourced from [5])

In many applications, ANNs can be really complex structures to optimize, with multiple hy-
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perparameters to be adjusted in order to achieve optimum convergence. In addition, there are

also factors, often revolving around input data and model complexity, which can cause adverse

effects on model performance. Therefore, not only good theoretical knowledge is important,

but also a good implementation strategy, allowing for substantial model exploration. [15][4]

2.4.4 Convolutional Neural Networks

Convolutional Neural Networks have a fully connected MLP as part of them, which behaves as

described in the previous section. This comes after the FE stage, which is what makes CNNs

really sought after for pattern recognition and image analysis tasks. Contrary to MLPs where

2-dimensional feature vectors are flattened at the input, CNNs can also process 2-dimensional

inputs. These go through the FE stage and are pooled, or flatten, before inputted into the

MLP stage. The FE stage is commonly comprised of convolutional and pooling layers.

Convolutional layers work by sliding a kernel i.e. filter above an input feature vector e.g. 2D

image. This process is similar to the mathematical convolution which is depicted in Equation

2.4, showing two functions f(t) and g(t), ”reversed and shifted” on top of each other [53]. When

a filter kernel is convoluted with an input image, a feature map is the result. The height, size

and depth of this feature map is dependent on the number of filters, size of the filters, strides

(i.e. shift parameter) and padding (zero padded or not). [15][44][4]

After a convolutional layer, a pooling layer is commonly added which acts as a down-sampling

mechanism on the features i.e. extracted edges from the convolution activity. In the case of

max pooling, kernels are shifted on top of the convolutional layer output and features captured

within the kernel are averaged. This process is clearly illustrated in Figure 2.5 [44]. Pooling

not only results in better generalisation, but also in lower complexity.[15][44][4]

It is important to note that convolutional layers hold trainable parameters i.e. weights, whereas

pooling layers do not.

f(t) ∗ g(t) =
∫ ∞
−∞

f(τ)g(t− τ)dτ (2.4)
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Figure 2.5: Example of Pooling Operation in a CNN. (Image Sourced from [44])

Figure 2.6 shows an example CNN process that presents the operation of a simple CNN. From

the example, it can be seen that the feature maps have a smaller height and width as they

progress through the FE stage. However, they have are progressively much deeper. [15][4]

Figure 2.6: Example CNN Process Illustrating FE and Fully Connected Network Classification
Stage. (Image Sourced from [44])

CNNs are even more complex to build and train than ANNs, as there are more hyperparameters

to define and contain relatively more trainable parameters within the network. Finally, it should

be noted that transfer learning applications are common with CNNs, where numerous famous

architectures, e.g. AlexNet, are available for a range of applications. [15][4]

2.4.5 Long Short-term Memory Networks

For time-series classification and regression applications, Recurrent Neural Networks (RNNs)

are commonly known for their ability to ”remember” data sequences. Using this memory, an

RNN can easily be employed in applications were we want the output to depend on previous
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data inputs. Therefore, RNNs are most commonly applied onto forecasting scenarios. Theo-

retically, RNNs can ”remember” indefinite sequences of data but that is far from the truth in

practical applications. Fortunately, in 1997 Hochreiter & Schmidhuber first introduced LSTM

networks [23]. This type of RNN is capable of remembering longer sequences, due to their more

complex cell-type architectures, illustrated in Figure 2.7. In contrast to simple RNNs which

only have 1 neural network within their cells, LSTMs contain four layers of neural networks.

On the aforementioned figure, these neural networks are presented by the yellow rectangles,

also illustrating the activations used. The pink features within the cell correspond to pointwise

operators. [15][39]

In clinical research, LSTMs are often applied onto disease prediction processes. For example,

Saleh A. Y. et al. employed LSTMs for the prediction of dengue outbreaks based on climate

parameters. In our case, LSTMs can be utilised for predicting severe dengue, using PPG signals

as an input.

Figure 2.7: Example LSTM Cell Architecture (3 Cells). (Image Sourced from [39])

Similarly to ANNs, LSTM models can be implemented sequentially. Parameters such as ac-

tivation, kernel initialisation and the number of units (i.e. output dimensions of the LSTM

layer) can be selected. The input to a LSTM network should be structured in the following

way (Sample Size, Window Size, Feature V ector Size), where the window size defines the

number of prior inputs the network will use when making a prediction. This is true for a

many-to-one architecture, where the output of the LSTM is based on a given number (> 1)

of previous elements (feature vectors). Multiple LSTM layers can be stacked together, but

the output is usually a perceptron layer (dense layer) where classification or regression take

place. For the latter, no activation is required in the output layer, whereas for the former,



2.4. Machine Learning and Modelling 19

the SoftMax function can be applied. Common gradient descent optimizers, such as Adam,

are required for learning and the number of epochs, as well as the batch size can be specified;

similarly to the ANN training procedure. Noting that for regression, a common loss function

is the mean squared error as opposed to classification’s categorical cross-entropy. [15][4][48]

Training and testing methodologies for an LSTM network are similar to those utilised in ANNs

and CNNs. Again, both theoretical and empirical knowledge should be used to implement and

evaluate a model successfully.
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Design and Implementation

3.1 Introduction to Design

The design and approach to this study was very much based on the data made available by

Imperial College London and its quality, as well as the abundance of clinical events occurring

within each individual signal’s time span. Therefore, the technical approach and experimental

design of this project was ever-evolving as we progressed through it. This was important for the

effective exploitation of the available data and resources. As the project is highly exploratory,

assumptions were made in multiple instances, affecting model designs and resulting conclusions.

These will be portrayed in further detail in the Chapters that follow. No matter the level of

uncertainty that is encapsulating this study, a non-exhaustive pipeline of technical work was

set from the very early stages and as we progressed through the project, this pipeline was

updated and improved. This allowed for the review of each step in the process and a structured

evaluation of the practices, models and the data itself. The final pipeline is presented in

Figure 3.1 and can be used as a reference for the Chapters that follow and for an overview

of the technical design procedure. A more detailed breakdown of the different models and

experiments that were carried out will be presented in the last sections of this chapter, along

with implementation details.

Dengue patients who experienced severe symptoms, as defined in Chapter 2, were the focal

20
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point of this study. Identifying a point of severe infection, either at the point of admission

or during a clinical stay, would be of great benefit to healthcare professionals in diagnosing

a patient; enabling them to better manage such incidents, work proactively in providing the

necessary treatments and enabling an overall better resource organisation and allocation within

a healthcare facility. As the end goal of this study was to evaluate whether or not PPG signals

can be linked to the physiological characteristics of dengue patients, we are going to use severe

dengue indicators as they evolve through time, to guide us in the evaluation of this relationship.

With the help of ML, and deep learning as an extension, PPG signals will be analysed, processed

and explored, aiming to established a link between them and severe dengue symptoms.



22 Chapter 3. Design and Implementation

3.2 Design and Implementation Pipeline

Figure 3.1: The Project’s Design and Technical Implementation Pipeline.
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3.3 The Clinical PPG Dataset

Multiple hours of dengue patient data from study ”01nva”, recorded in 2020 in Vietnam’s HTD

by OUCRU, were supplied by Imperial College London [21]. For our project, raw PPG data from

11 Adult patients, each of different length, was made available as separate records. This data

included a timestamp in milliseconds, a counter, pulse readings in beats per minute, oxygen

saturation levels and status, the plethysmography signal, the PPG battery percentage, the

red LED’s analogue to digital converted (ADC) signal, the infrared LED’s analogue to digital

converted signal (IR ADC) and lastly, the perfusion index. The sampling frequency used for

all PPG records was at 100 Hz, resulting in readings to the closest 10th of a millisecond. To

complement the PPG records, a single file with the concurrent raw clinical records for each

patient was also supplied by the University, including details on patients’ demographic profiles,

vital sign parameters and a range of clinical events that the OUCRU study monitored and

captured. The latter file was a product of a multi-sheet spreadsheet that was reformatted by

the University into a stacked comma separated value file that includes the study number, the

complete date and time to the nearest second, and a column for the event name accompanied

by a Boolean results column to indicate the occurrence of the event.

As this is a recently formed dataset, there is great opportunity of exploration and analysis.

However, that also comes with a high level of uncertainty that requires constant adaptation of

design and intense processing.

3.4 Processing the Raw PPG and Clinical Data

In order to prepare the raw data for our ML models that follow, lots of work had to be completed

on structuring the dataset and extracting the main parameters of interest from the supplied

raw data files. As this is a brand new dataset, a large portion of the project was spent in

troubleshooting faulty inputs and missing information in the raw PPG and clinical files. Even

though this process was time consuming, it was a cardinal point for our ML algorithms to be

effective. The main tool used for processing the data was Python 3 and predominantly the
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Pandas Library [59] [30]. Using the specified library, data manipulation is computationally

more efficient and the resulting code listings are more readable. In addition, utilising libraries

such as Pandas allows for better scaling and adjustments which makes the code highly reusable

for future work.

The first step of the analysis required the meticulous examination of data in order to better

understand the raw structure of the data set. Therefore, we began by plotting patients’ raw

PPG signals to get an initial glimpse of the waveforms. Both the raw Pleth and IR ADC

signals were selected and used throughout the study due to them possessing different features.

The latter is considered more noisy than the former, but at the same time it carries a wider

spectrum of information compared to the cleaner Pleth signal [28]. It is important to note that

throughout the study, and particularly during ML modelling, only one of the two signals were

used at a time. Nevertheless, both were evaluated. First, the absolute start time of each PPG

record was extracted from the filenames of the raw signal data supplied by Imperial College

London; using a script in Python. This was an important step as we were aiming to match

clinical data events to the raw signal data. Unfortunately, for patient 2001 the start time of the

PPG was not recorded in their filename and as a result the data file was rejected; leaving us

with 10 patients. Having collected the start date and time for each raw signal record, the Plotly

library was used for plotting the signals with sampling frequency of 100 Hz [25]. Example

plots for both IR ADC and Pleth signals can be seen in Figure 3.2.

During the initial plotting procedure, it was discovered that only a few seconds of PPG signal

data were recorded for patient 003-2026 and as a result, the file was removed from the dataset,

leaving us with a total of 9 patient files.

3.4.1 Filtering

Since PPG signals can be highly corrupted with high-frequency noise, baseline wander and

other motion artefacts, a band-pass Butterworth filter was implemented to improve signal

quality [62]. A 1st order high pass filter with a cutoff frequency of 1 Hz and a 4th order low-

pass filter with cutoff frequency of 20 Hz were implemented. The type and order of the filter, as
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(a) IR ADC Signal

(b) Pleth Signal

Figure 3.2: Example of Raw PPG Waveforms for Patient 003-2162.

well as the cutoff frequencies, were chosen accordingly, as suggested by Liang et al. [27]. Even

though we could apply a lower cutoff frequency for the low-pass filter at around 5 − 10 Hz,

20 Hz were chosen to enable further testing in later modelling stages, as higher frequencies may

encapsulate physiological effects of dengue that are still unknown. Nevertheless, including a

higher frequency spectrum comes with the trade-off of having more noisy signals, especially in

the case of IR ADC signals. The frequency response for the Butterworth filter can be described

mathematically using Equation 3.1 [55]. The filter frequency response for both the high-pass

and low-pass filters can be seen in Figure 3.3, while in Figure 3.4, an example of the resulting

filtered PPG signals is portrayed. Please note that the resulting filtered PPG signals have zero

mean and the signal’s DC component was rejected.
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(a) High-pass Butterworth Filter (b) Low-pass Butterworth Filter

Figure 3.3: Band-pass Butterworth Filter Frequency Response - Magnitude and Phase Plots.
First Order High-pass filter with 1 Hz Cut-off Frequency (a) and Fourth Order Low-pass filter
with 20 Hz Cut-off Frequency (b).

The Butterworth filter was implemented using the SciPy Library in Python which would allow

for an efficient application of the filter onto the signals within the constructed pipeline [60].

H(jω) =
1√

1 + ε2
(
ω
ωp

)2n (3.1)

where:

n = Order of the Filter

ω = 2πf (radian frequency)

ε = Pass-band Maximum Gain

3.4.2 SQI Calculations

Signal Quality Indexes can be used to assess the quality of a signal, allowing us to pinpoint

signal sections that would be more appropriate for use during FE and modelling. In order to

calculate the SQIs, both raw and filtered signals of each patient had to be grouped in windows.

Each window would then be passed through our pipeline in Python, where an SQI would be

calculated and appended into the dataframe. For our application, a 30-second window length
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(a) IR ADC Signal

(b) Pleth Signal

Figure 3.4: Example of Filtered PPG Waveforms for Patient 003-2162 using Butterworth Band-
pass Filter.

was considered appropriate. The calculated SQIs are listed below in Equations 3.2-3.9 and their

input signal requirements are listed in Table 3.1 [12]. The correlogram SQI is not presented

mathematically as it portrays the auto-correlation of the PPG signal with itself over given

time lags and was implemented using the Vital SQI Library [12][45]. All other SQIS were

implemented using the SciPy and NumPy libraries, from scratch [19]. [12]

Skewness:

µ̃3 =

∑N
i (xi − x̄)3

(N − 1) ∗ σ3
(3.2)

where:
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x = Input Signal - Raw PPG

x̄ = Mean of Input Signal

N = Signal Length (No. of Samples)

σ = Standard Deviation

Kurtosis:

φ =

√√√√ 1

N

N∑
i=1

(xi − x̄)4

σ4
(3.3)

where:

x = Input Signal - Raw PPG

x̄ = Mean of Input Signal

N = Signal Length (No. of Samples)

σ = Standard Deviation

Entropy:

S = −
N∑
n=1

xi
2 loge

(
xi

2
)

(3.4)

where:

x = Input Signal - Raw PPG

N = Signal Length (No. of Samples)

Zero-crossing rate:

ZCR =
1

N

N∑
i=1

I{yi − yi−1 < 0} (3.5)

where:

y = Input Signal - Filtered PPG

N = Signal Length (No. of Samples)

I = Indicator Function - 0 if Argument is False, 1 if True

Mean-crossing rate:

MCR =
1

N

N∑
i=1

I{xi − xi−1 < x̄} (3.6)
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where:

x = Input Signal - Raw PPG

x̄ = Mean of Input Signal

N = Signal Length (No. of Samples)

I = Indicator Function - 0 if Argument is False, 1 if True

Signal-to-noise Ratio:

SNR =
x̄

s
(3.7)

where:

x̄ = Mean of Input Signal - Raw PPG

s = Signal Sample Standard Deviation

Perfusion:

Perfusion =

[
(ymax − ymin)

|x̄|

]
× 100 (3.8)

where:

y = Input Signal - Filtered PPG

x̄ = Mean of Input Signal - Raw PPG

Comparing Peak Detection Algorithms (MSQ):

MSQ =
(SScipy ∩ SBillauer)

SScipy

(3.9)

where:

SScipy = Peaks Detected by the Scipy Detecor

SBillauer = Peaks Detected by Billauer Detector

Due to the lack of data, if we were to reject signal segments or a whole signal based on SQIs,

the rejection thresholds would have to be very lenient and that would not be efficient or greatly
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SQIs Requirements

Kurtosis Applied onto the Raw Signal
Skewness Applied onto the Raw Signal
Signal-to-Noise Ratio Applied onto the Raw Signal
Entropy Applied onto the Raw Signal
Mean Crossing Rate Applied onto the Raw Signal
Correlogram Applied onto the Filtered Signal

MSQ

Applied onto the Filtered Signal using
two differrent Peak-Detectors.
primary detector = Default Scipy
secondary detector = Billauer Method

Zero Crossing Rate Applied onto the Filtered Signal
Perfusion Applied onto both Raw and Filtered Signals

Table 3.1: SQI Signal Input Requirements Table.

beneficial. Therefore, the best approach was to compare candidate signal segments between each

other before deciding if they’re appropriate to use in our experiments. While the calculated SQIs

can be a great tool for pinpointing sufficient quality signal segments for our ML applications,

SQIs can also be used as ML input features, enabling classification and regression applications.

However, that is mostly valid with the statistical SQIs and not the whole population of them.

For example, calculating the MSQ value, comparing two peak-detectors’ performance, does

not carry essential signal information other than the level of noise that a signal might have.

On the other hand, the perfusion index which relates to the absorption of light through the

finger, carries significantly more information that can be linked to physiological parameters i.e.

a dengue patient might have abnormal blood flow rates. Nevertheless, for the current study,

SQIs’ main purpose was to enable us to better understand our dataset and make informed

decisions on deciding which signals to use further down the project.

3.4.3 Event Detection and Matching with Filtered Signals

After filtering the signals, splitting it into 30-second windows and calculating SQIs, the next

and most important step was to match events from the raw clinical data to specific windows

in time. To do this, an algorithm was designed by exploiting the Pandas Library, fetching a

series of events from the raw clinical data, along with their incident times, and matching those

to patient PPG records, using the start and end times of the 30-second signal windows.
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The events of interest were those related to severe dengue, focusing on DSS. A lookup list was

created using the following clinical event names: ’event shock’, ’reshock24’, ’diagnosis admission’

(always indicating shock), ’shock admission’, ’ascites’, ’respiratory distress’, ’ventilation cannula’,

’ventilation mechanical’, ’ventilation ncpap’, ’bleeding severe’, ’cns abnormal’, ’liver mild’, ’pleu-

ral effusion’ and ’skidney’. As seen in Section 2, these parameters are either indicating DSS or

are closely associated with it. A query was then constructed that searched for events within

the raw clinical data, matching it with patient PPG signals, if date and time were within the

record’s time range. Of course, the query also made sure to check for the correct patient IDs.

The clinical event ’shock admission’ was positively marked when patients were admitted with

dengue shock and was the only event that was not matched to an exact time window, as it

describes the entirety of the patient’s signal. By doing this, we also need to assume that the

PPG records can still capture the effects of shock onto a patient, even if there is a slight delay

between admission and the start of PPG signal recording. This assumption is valid due to

the nature of the disease, namely, not having a dedicated treatment to alleviate physiological

symptoms timely [46].

3.4.4 Final Data Structure

The processing steps presented in the three previous sections were applied for every patient.

As this procedure was automated within our Python script, more data can be easily intro-

duced in future work. In the very end of processing the raw data, two files were outputted in

comma separated value format, converted directly from the Pandas dataframes that were used

throughout processing.

The first output file contains the windowed signal date and time, followed by the SQIs and

clinical event matches for every patient, stacked. In addition to the aforementioned features,

we have also added a column with the duration of each patient’s record, two columns with the

counter start and counter end fetched from the original signal data of each patient, a column

with the study number i.e. patient ID, a column indicating the file number for patients with

more than one PPG record and finally, a ”keep” column that can be toggled within Python
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to aid with choosing one or multiple signal windows. Having all patient data into a single

file allows for easier and faster access for further processing. An in-depth illustration of the

structure of this file is shown in Figure 3.5 along with the data types for each column variable.

Figure 3.5: Data Processing Output 1: Windowed SQIs matched with Clinical Data - Dataframe
Structure.

The second output file contains the full length of, raw and filtered IR ADC and Pleth signals

for all patients, stacked. In the same file we have also included the duration of each record,

the original counter from the raw data for each file, the study number matching the signals,

a column indicating the file number - in case a patient had more than one PPG record - and

finally, the PPG datetime. The structure for the second output file can be seen in Figure 3.6.

In the same Figure, the data types of each column are also portrayed.

The ”PPG Datetime” in the second output file will be the linking variable with the first output

file. The ”PPG Window Start” and ”PPG Window End” can then be used to select the portion

of a signal that is required, extracting it from the first file. Using this methodology, it is also

very easy to select between Pleth and IR ADC signals when creating the models.
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Figure 3.6: Data Processing Output 2: Raw and Filtered Signals - Dataframe Structure.

3.4.5 Visualising Shock Events in Time

As a final step in the process, it is important that we plot the signals along with the registered

shock events. This is paramount in understanding the data further, aiding towards a more

informed design of further experiments and ML models. We can plot this data using our

Pipeline’s output files and the Plotly library for Python. Figure 3.7 illustrates the Filtered IR

ADC signal for each of the 9 patients, along with the time and date of the shock event and

an indication of shock on admission. Only shock events are illustrated on the figures, simply

because no other severe dengue events were present in the clinical records. The same plot for

Pleth signals can be found in Appendix Figure C.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i)

Figure 3.7: Visualising the Patients’ IR ADC Signals along with Corresponding Shock Events
Captured Within the PPG Record.
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3.5 Experiments to Determine the Relationship Between

PPG and Physiological Parameters

After examining the available data, an initial set of experiments had to be set up in order to

explore the relationship between PPG data and physiological parameters of dengue patients.

It is obvious that there are not enough records, and even less shock events present in those

records, to apply complex models that look out for complex relationships within our data.

Nevertheless, aiming to fully exploit what is available, we were able to define six different

experiment scenarios that would aid in realising the true relationship between PPG signals and

the effect of dengue on a patient. These six experiments are illustrated in Table 3.2.

Experiment
No.

Experiment Description
Patient ID/IDs used
for the Main
Experiment

1

Binary classification of the signals of a
dengue patient admitted with shock vs.
the signals of a dengue patient who was
admitted without shock.

003-2162 and 003-2028

2

For a dengue patient admitted without
shock - Binary classification of PPG
signals pre-shock and PPG signals post-
shock (Given that a shock event was
registered within the PPG record).

003-2104

3

For a dengue patient admitted with shock
- Binary classification of PPG signals before
a shock event and PPG signals post-shock
(Given that a shock event was registered
within the PPG record).

003-2009

4
Multiclass classification using the classes of
Experiment 1 and 2 combined.

003-2162, 003-2028 and
003-2104

5
Multiclass classification using the classes of
Experiment 1, 2 and 3 combined.

003-2162, 003-2028,
003-2104 and 003-2009

6

Explore the predictive capacity of a model
given a PPG signal of a patient pre and post-
shock, using LSTM regression followed by
binary classification on the regression’s output.
(Patient 003-2009 was also admitted with shock)

003-2009

Table 3.2: Defining the Study’s Fundamental Experiments.

While we have only defined six main experiments, through them we can investigate multiple

hypotheses. For example, we can examine how well a model generalises onto signals of patients
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that were not involved during the model training and testing. Such tests will enable an even

more comprehensive evaluation to be carried out, pinpointing important and useful data trends.

In Table 3.2, the patient ID/IDs used for the experiments are also presented. These were decided

based on signal SQIs and availability of data. For example, for Experiment 1, we required a

patient signal from a patient that was admitted with no shock and did not develop shock during

the PPG record’s length. The only patient available with these features is patient 003-2162, as

seen in Figure 3.7i. However, this specific patient experienced shock approximately 3 to 4 hours

after the end of the PPG record, which is why it is not visible onto the aforementioned figure.

Even though this can interfere with the validity of our results, choosing a signal segment early in

the recording can still allow us to carry out the experiment successfully. This may not be ideal

but it is the closest we could get to a good example of no shock on admission. It is important

to note, that attention was also paid onto the signal SQIs when selecting the segments of data

to be used in modelling. Highly deteriorated signal portions were avoided completely or were

chosen in a way that they represented only a very small percentage of the chosen sample. While

we always look for a clean signal, in real time PPG applications that is not always available,

especially when you need data to train a model on. Therefore, the best option is to use noise to

our advantage and train ML models with some of it present. This will force the model to learn

a wider distribution of features per class, resulting in better generalisation. Of course, that is

not the case with extreme noise and a dataset with only a few training data points, which is

something that we always need to keep in mind.

Some signals, such as that of patient 003-2012 (Figure 3.7b), were avoided entirely. In this

specific example, the waveform after the 00 : 00 mark was completely flat, which raises some

questions on the general signal quality and conditions of recording. Even though the signal

before the 00 : 00 mark does not seem problematic, patient 003-2023’s signal was considered as

a better replacement due to it representing the same trend, but with a signal that looks better

visually and has SQIs to support that.

The final patient and segment selections will be fully presented in the Results section.
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3.6 ML Model Design and Development

In order to carry out the experiments presented in the previous section, various ML algorithms

were constructed and explored. The first step in all of the ML models, was to extract the neces-

sary features. Then, depending on the model, certain pre-processing steps had to be completed

prior to building and testing the algorithms. Pre-defined metrics are then used to evaluate

the model outputs. As part of exploring the relationship between PPG and physiological pa-

rameters, all of the ML models that were constructed in the duration of this project were also

evaluated on their architectures, allowing us to draw further conclusions on the input PPG

data.

3.6.1 ML Model Types Overview

A high-level overview of the ML models constructed for this study is presented in Table 3.3,

along with the FE steps carried out. For each of the classification experiments (No. 1-5)

presented in Table 3.2, model types 1-3 were built, tested and optimised. Comparing these

three models between them, for each experiment, will result in a better comprehension of the

data itself and allow for a deeper level of analysis. In the case of Experiment No. 6, a single

LSTM regression model was built and evaluated, using a pre-trained classifier model, from

earlier experiments. This ML model is shown in Table 3.3 as ML model type 4. Please note,

that between FE and ML model fitting, certain pre-processing steps are required which are not

presented in Table 3.3. However, those will be clearly explained in the subsections that follow.

3.6.2 ML Pre-processing

Utilising the Pandas library and the output files presented in Section 3.4.4, we were able to

extract the exact PPG signal segments to be used as an input to our ML pre-processing stage.

To do that, the study number (patient ID) was selected, and the start and end times of each

signal segment were chosen. Since we did not have a lot of patients, the process of extracting
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ML Model Type No. Model Pipeline Description

1 FE using STFT and classification using an ANN.

2
FE using STFT followed by PCA for dimensionality
reduction and classification using an ANN.

3
FE using STFT followed by further FE using a CNN
and classification using CNN’s MLP.

4

FE using STFT followed by either, no further processing
or PCA for dimensionality reduction (both scenarios will
be tested). Regression utilising an LSTM network will
follow. Then, the regression’s output will be classified
using a pre-trained ANN binary classifier.

Table 3.3: Defining the Four Main Types of ML Models Used in Evaluating the Study’s Ex-
periments.

and querying shock event times and signals, as well as reviewing SQIs to make sure that the

chosen signal segments were of adequate quality, were done manually. Even though this process

was time consuming, it was essential for the quality of our models.

3.6.2.1 Signal Segment Selection and Windowing

As with the rest of the Python implementations, for this part of the experiment the Pandas,

Numpy and SciPy libraries were utilised.

At the very start of each experiment, we had to extract the necessary signal segments to be in-

putted into our pre-processing pipeline and subsequently, through a constructed ML algorithm.

For Experiments 1,2 and 4 from Table 3.2, we selected 2 hour signal segments for each class

that had to be classified. Taking Experiment 1 as an example, a 2 hour signal segment was

selected from patient 003-2162 and another 2 hour signal segment was selected from patient

003-2028. The length selection was based on the signal quality and availability, meaning that

if we had exceeded a length of 2 hours, the signal selections would have started deteriorating

or we would not have enough data to select from, due to the original signal length. As men-

tioned earlier, the 2 hour segments were selected diligently by comparing SQIs in different parts

within the signal and by visually examining the waveforms. For Experiment 3, the segments

were reduced to only 77 minutes of data, due to patient 003-2009’s post-shock signal being

too short. Unfortunately, this was the only patient exhibiting both shock on admission and a
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clinical shock within the PPG record that was long enough. While patient 003-2103 exhibited

similar clinical features, the pre-shock signal length was minimal, deeming it unusable for this

classification process. The aforementioned characteristics can be easily observed in Figure 3.7,

presented earlier. It is important to note that while SQIs of the selected segment were not

excellent, using less data was less desirable because of the way ML algorithms work; more data

results in better training and in some cases better generalisation [15]. Since Experiment 5 is a

classification of all of the classes presented in Experiments 1, 2 and 3, we decided to select 77

minute segments for all classes. That was done in order to balance the dataset and compare

model training and testing performance fairly. Finally, for Experiment 6, as we are aiming to

explore time-series prediction through regression, the whole length of patient 003-2009’s data

was used, as is. The exact times of the selected segments, for each experiment, will be presented

in the next chapter of this study.

After selecting a signal segment for a patient in an experiment, we had to specify which signal

of that patient to use. Both filtered IR ADC and filtered Pleth signals were tested out for

each and every experiment, separately. This enables us to compare results and pinpoint our

observations.

Following segment and type selection, we then proceeded with splitting the signal segments

into smaller windows. For experiments with 2 hour signal segments representing each class, the

segment was split into 100 windows, each representing 7200 signal data points i.e. 1 minute

and 12 seconds. When 77-minute segments were chosen, i.e. in Experiments 3 and 5, we split

the data into 77 windows, each corresponding to 6000 signal data points i.e. 1 minute. This

was done in order to increase the training data that is available, but through that, we could

also evaluate whether or not the window length was an important parameter in ML model

performance. Once all the classes’ signals were split into windows, those were concatenated

into a single array, in order.

As a final step in this process, an array with labels was created, corresponding to each window,

depending on the class it belonged to. For the case of Experiments 1,2 and 3, binary labels

were created, whereas for Experiments 4 and 5, we formed 4 and 6 labels respectively. Even
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though Experiment 6 involved regression, labels had to be formed for the classification stage of

the experiment. For all experiments, labels were concatenated in order into a single array.

3.6.2.2 Standardization and Structuring Data for Training and Testing

As a result of the previous section’s processing, for each experiment, an array of signal segment

windows was created together with an array of labels. Taking Experiment 1 as an example, we

had an array of 200 windows in total, 100 from Class 0 and 100 from Class 1, each containing

7200 data points. This array was accompanied by another array of 200 labels, in this case 100

labels of 0 and 100 labels of 1.

In all ML models, the data has to be split into a train and a test set. For our case, since the

main models we explored were neural networks, a validation set was also defined in a later stage.

For now, Scikit-Learn’s train test split function was used, with the stratified and shuffled

attributes set, to shuffle the data and split it into 80% training and 20% test sets. The stratified

option made sure that the classes were equally represented in both the train and test sets. This

split was also applied to the array of labels. After exploring some models, in order to verify

the results for the best performing ones, K-Fold Cross Validation (KFCV) was applied onto

the data instead. In that case, instead of the train test split function, we used Scikit-Learn’s

StratifiedKFold function to split and shuffle the data into train and test folds. Summary of

the KFCV procedure is presented in Figure 3.8. Essentially, the data is split randomly into K

folds, where K is decided by the user. In our case, also shown on the aforementioned figure,

K was equal to 5. This resulted in an 80% / 20% split of the dataset, into training and test

respectively. As K is equal to 5, each model that was put to the test, was run 5 times. In each

fold, the model metrics (presented at the end of the chapter) were stored and once all folds

were completed, they were averaged. KFCV ensures that results are less probabilistic and not

dependent on data splits, which in turn ensures a less biased evaluation. Again, to make sure

that the classes were equally represented in the training and test sets, we employed a stratified

split. Please note that the split functions were used for all stateless classification experiments

and not for the LSTM network model, which is stateful (Experiment 6). [6] [29]
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Figure 3.8: K-Fold Cross Validation Approach - Five Fold Case. (Source of Graphic: [29])

After the data is split into training and test sets, we apply standardization as per Equation

3.10. To do that, we first compute the training set’s mean and standard deviation. Using these

values for µ and σ, we apply the standardization process onto both, train and test sets. We

only use the training set’s scale parameters to avoid data leakage [7]. The z-score approach was

chosen as PPG signals can be described as Gaussian distributions [16]. The standardization

process is important so that we can accommodate for bias e.g. in hardware. This process will

also result in better scaling of the feature vectors outputted from the FE steps, allowing them

to be better represented into the ML algorithms.

z =
X − µ
σ

(3.10)

where:

X = data point

µ = population mean

σ = population standard deviation
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(a) 1− 20 Hz Frequency Range Example 1 (b) 1− 20 Hz Frequency Range Example 2

Figure 3.9: Example PSD Spectrograms using STFT.

3.6.2.3 Feature Extraction using STFT

While some models might take as an input the raw data, FE can be highly beneficial in isolating

important data characteristics. Even though we could use some of the pre-calculated SQIs to

form the feature vectors of each window presented in the training and test set, spectral analysis

was chosen instead. As presented in Section 2, past research supports the use of time-frequency

analysis and the STFT is a good starting point.

The STFT is applied onto each window present in the training and test data. By doing this, we

can extract the frequency components of the windowed signal as they are changing in time. The

result is a 2-dimensional (2-D) matrix of power spectral density (PSD) amplitudes (V 2/Hz),

where each data point corresponds to a time and a frequency. The matrix dimensions depend

on the input signal length and the frequency range we wish to extract. For example, a signal

window of 7200 data points in the original frequency range of 1 to 20 Hz (original frequency

range after filtering), results in a PSD matrix of 49 − by − 32 amplitude values, where 32

corresponds to the time bins and whereas 49 corresponds to the frequency bins. Example

spectrogram plots of this configuration can be seen in Figure 3.9. The STFT was applied

onto our windows using SciPy’s spectrogram function, by iterating through training and test

windows, specifying the sampling frequency and the desired output mode i.e. PSD amplitudes

[60].
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(a) 1− 10 Hz Frequency Range Example 1 (b) 1− 10 Hz Frequency Range Example 2

Figure 3.10: Example of PSD Spectrograms using STFT with a Narrower Frequency Selection.

In spectrograms 3.9a and 3.9b from Figure 3.9, it is obvious that at higher frequencies, the

average PSD amplitude is significantly lower that at lower frequencies. In that case we can

explore a lower range of frequencies to include in our matrix i.e. 1 − 10 Hz, which is seen on

spectrograms 3.10a and 3.10b. This also causes the dimensionality of the each window’s PSD

matrix to decrease (i.e. 23− by − 32 for a 7200 data-point window) which reduces the amount

of computational resources required during modelling and can lead to less model overfitting.

We have implemented multiple frequency ranges during model implementations, allowing for

comparisons to be made and results will be presented in the next Chapter.

3.6.3 ML Model Design and Implementation

In the following section we will look at our approach in designing the ML models presented in

Table 3.3. These models were all implemented using TensorFlow’s high-level API, Keras, and

other TensorFlow utilities [1]. More specifically, the Sequential class within Keras was used

for constructing our ML algorithms. All models were built from scratch.

3.6.3.1 Baseline Model

The first model that was explored for all binary and multi-class classification experiments (3.2)

was the baseline model; as presented in Table 3.3. Even though baseline models are usually
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Hyperparameter Name Values Tested

No. of Hidden Layers 1, 2, 3, 4, 5, 6
No. of Neurons 32, 64, 128, 256 in Different Configurations
Bias and Kernel regularizers None, l1 or l2 - 0.01, 0.001, 0.001
Kernel Initialiser None or glorot uniform
Batch Normalisation With or Without (and Position)
Data Augmentation None, Gaussian Noise, Rotating Features
No. of Dropout Layers None, 1, 2, 3, 4 - Also dependent on the number of fully connected layers
Dropout Layers None, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6
Optimizers Adam, Adagrad, RMSprop
Optimizer Learning Rates 1e-2, 1e-3, 1e-4, 1e-5, 2e-3, 2e-4, 3e-3, 3e-4, 4e-3, 4e-4
Activations Sigmoid, Relu, Tanh
Epochs 50-1000, in increments of 50
Batch Size 16-112, in increments of 16
Validation Size 0.1 or 0.2

Table 3.4: ANN Hyperparameter Grid-search (ML Model Types 1 and 2).

oversimplified ML algorithms, we chose to create one that is simple enough but at the same

time optimised, so that we could have a better comparison scale with other models. Essentially,

our baseline could be considered as a very simplified version of the models that follow.

A feed-forward MLP was a sensible choice for this purpose. The model inputs are the flattened

2-D PSD amplitude matrices, and their corresponding labels; either binary or multi-class,

depending on the experiment. In order to test the model’s hyperparameters and see what

works best for each experiment, a grid search methodology was employed. The parameters and

values that were investigated are presented in Table 3.4. After testing, the best performing

hyperparameters were selected and manual fine-tuning was performed to optimise the model

further. In general, multi-class classification experiments required models with slightly more

complex structures than binary classification problems, but the same grid search parameters

were considered adequate.

The loss function for the baseline models was chosen to be categorical crossentropy with a

SoftMax activation in the output layer. For binary classification, there were 2 output neurons,

whereas for the multi-class classification, the number of output neurons matched the number

of classes. That is because, categorical encoding was used, converting the labels into a binary

matrix representation.

The cross-entropy loss function for the binary and multi-class classifications is presented in
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equation 3.11.

H(y, p) = −
k∑
i=1

yi log (pi) (3.11)

where:

y = expected output

p = predicted output

k = number of classes

For each classification experiment (3.2), the same optimization procedure was repeated, estab-

lishing a baseline performance for each of the experiments.

3.6.3.2 PCA Model

For the PCA Model, a MLP was implemented again, using the exact same designing and training

procedure seen in Section 3.6.3.1; including the grid-search approach. However, the difference of

this model is the application of PCA onto each of the spectrogram matrices, before their input

into the ML model. Through PCA we are aiming to reduce computational resources required

in training, by reducing the dimensionality of input feature vectors. In addition, PCA can help

ML models converge faster and better, by reducing complexity. The main investigation point

for this model was the number of PCA components to use and evaluating the performance of

the model compared to the baseline. To find the optimum number of PCA components, a grid-

search approach was used, testing within the range of 20 − ”number of feature vectors”, in

20 component increments. For example, if our training set consisted of 200 2-D PSD matrices,

the range was equal to 20-200. This test was carried out for numerous MLP architectures for

each experiment and performance results were averaged; for each experiment independently.

Multiple MLP architectures were tested, some more complex than others, as the number of

input data points greatly influences model convergence e.g. a complex model with small input

feature vectors will most likely result in the model overfitting.
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In order to perform PCA, we added a step into our pipeline, and used SciKit Learn’s decom-

position library to apply the PCA transform onto our spectrogram matrices. This function

applies singular value decomposition onto our data in order to project it onto the lower dimen-

sions. In order to do that, the 2-D PSD amplitude matrices had to be flattened first. We then

fit the PCA transformation onto the training set, defining the number of components. Lastly,

we apply the PCA transformation onto both the training and test sets.

Again, this model was investigated for each classification experiment presented in 3.2 and results

were recorded.

3.6.3.3 CNN Model

The next model that was implemented for the evaluation of experiments in Table 3.2 is a CNN.

The inputs to the CNN are the 2-D PSD Amplitude matrices. This time, the features are

not flattened as they are processed as whole spectrogram ’images’ where each distinct point

in time and frequency corresponds to an ’image’ pixel. The first stage in a CNN is the FE

stage, where convolutional and pooling layers are used to extract further information from the

2-D spectrograms. The second part of a CNN is a fully connected network (i.e. MLP), where

extracted features are fed in after flattening, for classification.

For CNN models, different hyperparameters were tested for both constituent parts of the net-

work. The grid-search hyperparameters tested can be seen in Table 3.5. Please note that

this procedure is not exhaustive as there are millions of possible hyperparameter combinations

that can be applied within a CNN. Nevertheless, all tested CNN models were fine-tuned and

optimised to the best of our resources.

As described in Section 3.6.3.1, the SoftMax activation was used in the output, while

categorical crossentropy was used for the model’s loss function.

While the grid-search was performed, using our theoretical knowledge on CNNs, we made sure

that our actions and selections were coherent. For example, in literature, Adam seems to be

the preferred optimizer choice. Another example could be the number of filters and kernel sizes
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Feature Extraction Stage
Hyperparameter Name Values Tested

Data Augmentation None, Gaussian Noise, Feature Rotation
No. of Convolutional Layers 1, 2, 3, 4, 5, 6
No. of filters 32, 64, 128, 256, 512
Kernel Size (2,2), (3,3), (4,4)
Convolutional Layer Padding Zero Padded or No Padding
Kernel Initialisater None or glorot uniform
Batch Normalisation With or Without (and Position)
Activations Relu, Sigmoid, Tanh
No. of Dropout Layers None, 1, 2, 3 - Also dependent on the number of CNN Layers
Dropout Layer Rates None, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6
Max Pooling Layers Matched the Number of Convolutional Layers
Pool Size (2,2), (3,3), (4,4), (2,3), (3,4)
Padding when Pooling Zero Padded or No Padding
Strides when Pooling (1,1), (2,2), (3,3)

Fully Connected Layer
Hyperparameter Name Values Tested

No. of Hidden Layers 1, 2, 3, 4, 5
No. of Neurons 32, 64, 128, 256 in Different Configurations
No. of Dropout Layers None, 1, 2 - Also dependent on the number of fully connected layers
Dropout Layer Rates None, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6
Activations Relu, Sigmoid, Tanh
Optimizers Adam, Adagrad, RMSprop
Bias Regularizer None, l2 - 0.01, 0.001, 0.0001
Optimizer Learning Rates 1e-2, 1e-3, 1e-4, 1e-5, 2e-3, 2e-4, 3e-3, 3e-4, 4e-3, 4e-4
Epochs 50-1000, usually in increments of 50
Batch Size 16-112, in increments of 16
Validation Size 0.1 or 0.2

Table 3.5: CNN Hyperparameter Grid Search (ML Model Type 3).
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that increase as we go deeper within a CNN, to represent different levels of information present

in the input feature vectors [15]. However, architecture designs depend on the type of data and

its distribution, as that influences the function the model is aiming to approximate. Therefore,

empirical evaluation was the main decisive point in our model designs and selections, with

theory allowing us to fine-tune and steer the experiment.

3.6.3.4 LSTM Model for Dengue Shock Prediction

The final model that was tested is an LSTM Model, carrying out Experiment 6 from Table 3.2.

Unfortunately, LSTMs require a lot of data for their successful training, due to the complexity of

the network and the function they are trying to approximate [13]. This was a major restriction

for our experiment. Not only did we not have enough data, the only patient experiencing a

shock event enough time after the start of a PPG recording, is patient 003-2009. As you can

see from the signal plot in Figure 3.7a, the post-shock data only lasts 77 minutes. Therefore,

not enough training data was available for predicting a shock. As a result, the main goal of

implementing this experiment and model, was to identify whether or not we could establish a

relationship between consecutive spectrogram windows. Essentially, we will examine if PPG

signal segment windows carry enough information for them to be used in tandem and allow for

the prediction of the next time-step. This would allow us to understand PPG signals further

and possibly influence future research, with more data.

Due to their architecture, LSTMs are very hard to optimise and therefore, for this study, we

will be using Keras’ LSTM class as a black box for the most part, only altering the number

of units per layer, the activation, initialisation and bias regularisation. For the whole LSTM

model a grid-search implementation was employed, with Table 3.6 showing what was tested

[39]. For this experiment and model, a regression procedure was initially performed by the

LSTM network. Because of that, a dense layer without activation was added at the end of the

sequential model, with units equal to the number of features in a single feature vector. The

output was stored and then inputted into a pre-trained classification model that was chosen

from earlier experiments. As both full-sized spectrograms and spectrograms with PCA applied
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on them were tested as inputs to the LSTM, two different models were tested. Both followed

the same structure, but used different classifiers for the classification of the LSTM output.

For the model with the plain spectrograms as an input, the best performing baseline model

(ML model type 1) from Experiment 3 was chosen. For the spectrograms with PCA applied to

them, the best performing PCA model (ML model type 2) from Experiment 3 was chosen as the

classifier. In either scenarios, if the classifier could classify the LSTM output with success, i.e.

with similar performance observed in the training of the chosen classifier, then a relationship

could be established.

The PCA model was put to test in order to reduce the data dimensionality and in turn reduce

the complexity of the function the model will try to approximate. As we only have very little

data, this can be of benefit and can result in better model performance.

Hyperparameter Value Tested

No. of LSTM Layers 1,2,3
No. of LSTM Units 32-300 in increaments of 32
LSTM Lookback Window Length 1-28 in increaments of 1
Number of Dropouts None, 1, 2 - Before Each Additional LSTM Layer
Kernel Initializer None, Glorot Uniform, Random Normal
Bias Regulirizers None, l2 - 0.1, 0.001, 0.0001
Dropout Rate 0.1-0.6, increments of 0.1
Batch Size 16-100 in increaments of 16
Activations Relu, Sigmoid, Tanh
Optimizers Adam, Adagrad, RMSprop
Epochs 100-1000 in increaments of 100

Table 3.6: LSTM Hyperparameter Grid-search (ML Model Type 4).

3.6.3.5 Model Evaluation

All implemented models were evaluated using statistical metrics, applied to the ML model

outputs. Since we are using supervised learning and our models perform either binary or

multi-class classification (including model type 6 whose regression output was tested using a

classifier) we first need to construct our confusion matrices. The true positive, true negative,

false positive and false negative instances, between predicted and observed data labels, are

recorded and usually displayed onto a table. An example confusion matrix for the binary

classification case can be seen on Table 3.7. For the multi-class case, the table would simply
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have more dimensions with the main diagonal showing all the valid matches. [56][15]

Actual Classes
Predictions Negatives Positives
Negatives True Negatives False Negatives
Positives False Positives True Positives

Table 3.7: Example Confusion Matrix for Binary Classification.

There are multiple metrics used throughout literature to evaluate model performance. First,

we calculate accuracy, which is defined in Equation 3.12. This shows how the model performs

on test data and can give insights on how well models generalise. True predictions refer to the

sum of True Positive Values and True Negative Values whereas the False predictions refer to

the False Positive and False Negative values. [56]

Accuracy =
True Prediction

True Predictions+ False Predictions
(3.12)

Even though accuracy can be a good representation of model performance, in a clinical setting

we are also interested in metrics which might provide a better link to the clinical requirements.

For example, in detecting severe dengue, it might be more important to evaluate model perfor-

mance based on how well it can detect Positive classes i.e. classes characterising severe dengue.

That is because it is far more important to detect a shock signal, than to falsely classify a

non-shock signal. The precision metric, can capture this information and it is calculated as

seen in 3.13. [56]

Precision =
True Positives

True Positives+ False Positives
(3.13)

Recall, also referred to as sensitivity and true positive rate, is another important metric for the

evaluation of the results, with link to the clinical features. It essentially detects the percentage

of observed positive events, that were actually detected. In our case, that is the number of

severe dengue cases that were detected by our classifier, out of all severe cases observed. The

calculation procedure is shown in 3.14. [56]
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Recall =
True Positives

True Positives+ False Negatives
(3.14)

The F1 score is a mixture of both recall and precision, calculated as the harmonic mean between

of the two. This is shown in Equation 3.15. While it is a good metric for evaluation, it is not

widely used in scientific literature. [56]

F1 Score =
2×Recall × Precision
Recall + Precision

(3.15)

The confusion matrix was implemented using the confusion matrix function and metrics of

accuracy, precision, recall and F1 score were calculated using the classification report function.

This function also outputs macro averages, which are particularly useful for unbalanced classes

e.g. classes presented in Experiment 6. Macro averages portray the performance of the classifier

on all classes, by calculating metric scores per class and then averaging them. [42]



Chapter 4

Results

4.1 SQIs and Feature Extraction

4.1.1 Final Segment Selections for the Experiments

As presented in previous Sections, using the calculated SQIs and the plotted Data, patient signal

segments were selected for each experiment. Table 4.1 portrays the results of this selection along

with the defined classes (Numbers) for each experiment. For example, Class 1 in Experiment

1 represents the signal of patient 003-2028, which represents a shock on admission signal and

the 03/11/2020 10 : 30 : 00 − 12 : 30 : 00 segment was used in ML modelling. This segment

was then split into further segments which were then converted into PSD spectrograms, each

representing Class 1.

4.1.2 Feature Extraction

Multiple frequency ranges were compared during implementation, to determine the ideal fre-

quency range for our spectrogram FE process. The results from different frequency ranges were

collected using a sample ANN model (similar to Model 1 from 3.3), allowing us to empirically

compare the spectrogram frequency ranges. Figure 4.1 illustrates the results.

52
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Experiment Number
Patient ID and Signal
Description

Signal Segments Used
(Datetime)

ML Model
Class

1
003-2162 - No Admission Shock 20/07/2020 14:30:00-16:30:00 Class 0
003-2028 - Admission Shock 03/11/2020 10:30:00-12:30:00 Class 1

2
003-2104 - Pre clinical Shock 18/09/2020 15:45:00-17:45:00 Class 0
003-2104 - Post clinical Shock 18/09/2020 18:15:00-20:25:00 Class 1

3
003-2009 - Pre clinical Shock
(Admitted with Shock)

29/07/2020 02:16:00-03:28:00 Class 0

003-2009 - Post clinical Shock
(Admitted with Shock)

29/07/2020 03:31:00-04:43:00 Class 1

4

003-2104 - Pre clinical Shock 18/09/2020 15:45:00-17:45:00 Class 0
003-2104 - Post clinical Shock 18/09/2020 18:15:00-20:25:00 Class 1
003-2162 - No Admission Shock 20/07/2020 14:30:00-16:30:00 Class 2
003-2028 - Admission Shock 03/11/2020 10:30:00-12:30:00 Class 3

5

003-2104 - Pre clinical Shock 18/09/2020 15:45:00-17:45:00 Class 0
003-2104 - Post clinical Shock 18/09/2020 18:15:00-20:25:00 Class 1
003-2162 - No Admission Shock 20/07/2020 14:30:00-16:30:00 Class 2
003-2028 - Admission Shock 03/11/2020 10:30:00-12:30:00 Class 3
003-2009 - Pre clinical Shock
(Admitted with Shock)

29/07/2020 02:16:00-03:28:00 Class 4

003-2009 - Post clinical Shock
(Admitted with Shock)

29/07/2020 03:31:00-04:43:00 Class 5

6
003-2009 Shock Signal of Patient
Admitted with Shock and
Experiencing a Clinical Shock

28/07/2020 16:04:00 -
29/07/2020 04:48:20

Regression

Table 4.1: Selected Signal Segments for All Experiments, Based on SQIs and Plotted Data
Visualisations.

Figure 4.1: Frequency Range Exploration in Spectrogram FE - Inspired from Elbow Methodol-
ogy to find the Optimum Spectrogram Frequency Range for our Feature Vector Representations.
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It can be seen that the major turning point in test accuracy, in Figure 4.1, is from the 1−10 Hz

range to the 1− 8 Hz range, with an approximate difference of 2%. Therefore, computational

resources can be minimised by selecting the 1− 10 Hz frequency range, without compromising

models’ performance.

4.1.3 Dimensionality Reduction with PCA

To decide the final number of principal components to be used in each experiment’s ”PCA

model”, empirical data was collected, comparing the model performance in relation to the

number of principal components used in the transformation of each input spectrogram window.

This procedure was carried out on both IR ADC signals and Pleth signals. The results of this

investigation are presented in Figures 4.2a and 4.2b below. Please note that using less than 20

components proved inadequate for all experiments.

From the figures, there is no universal number of components that outperforms others, and

therefore for each experiment the number of components yielding the highest accuracy in the

test set was chosen. Generally, the number of components that led to the best performance

were in between the range of 40 and 120 principal components.

(a) IR ADC Signals (b) Pleth Signals

Figure 4.2: Effect of the Number of Principal Components on Sample Model Performance for
Each Experiment. The Maximum Number of Principal Components Varies due to the Size of
the Training Sets.



4.2. Experiment Results 55

4.2 Experiment Results

In the following sections, we will be presenting the results from each experiment that will

help us in drawing conclusions on the relationship between PPG and physiological parameters.

Moreover, through these results we can evaluate the data with regards to its overall quality and

information that it carries. Lastly, we are presenting the models with the highest performance

in each experiment, along with their training characteristics and designs.

4.2.1 Experiment 1

In Table 4.2 the binary classification results on Experiment 1 are portrayed. For simplicity, yet

representative outlook, only the best performing model from each model type is presented on

the Table. Only ML model types 1-3 from Table 3.3 are included, as the ML model of type 4 is

used for regression i.e Experiment 6 only. In the same table, in each row representing a metric,

the highest value is highlighted in red, while the lowest value is highlighted in yellow. This

allows for the comparisons between different models. In Figure 4.3, key metrics are illustrated

graphically allowing us to pinpoint that the best performing classifier for this experiment is the

CNN, using IR ADC signals to form the input data.

Experiment 1

Metrics
Baseline using
IR ADC

PCA using
IR ADC

CNN using
IR ADC

Baseline using
Pleth

PCA using
Pleth

CNN using
Pleth

0.875 0.725 0.975 0.875 0.750 0.975
0.900 0.750 0.950 0.875 0.825 0.875
0.800 0.850 0.900 0.950 0.750 0.875
0.925 0.900 0.860 0.800 0.725 0.925

5 Fold Cross Validation
Test Accuracies

0.800 0.875 0.860 0.925 0.800 0.875
Min Test Accuracy 0.800 0.725 0.860 0.800 0.725 0.875
Max Test Accuracy 0.925 0.900 0.975 0.950 0.825 0.975
Test Accuracy Average 0.860 0.820 0.909 0.885 0.770 0.905
Test Accuracy St. Dev. 0.051 0.070 0.047 0.051 0.037 0.040
Recall Average 0.860 0.815 0.909 0.885 0.77 0.901
Precision Average 0.869 0.820 0.912 0.892 0.774 0.904
F1 Score Average 0.864 0.817 0.910 0.888 0.772 0.902

Table 4.2: Experiment 1 Numeric Model Results. The Best Performing Models for Each De-
fined Model Type (1-3) are Presented, for IR ADC-based Spectrogram Inputs and Pleth-based
Spectrogram Inputs.

The worst performing model for this experiment is the PCA model, using Pleth as an input

signal. The CNN model outperform PCA by almost 14% in the KFCV test accuracy average.
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It is interesting to note that the CNN model outperformed all of the other models, with the

second best performing model being the CNN using Pleth signals as an input to the model.

The best performing model also registered the highest scores on precision, recall and F1 score

metrics, while the standard deviation on the test accuracy arising from the KFCV, was the 3rd

lowest out of the 6 different approaches. Overall, the chosen CNN model successfully classified

signals of patients admitted with and without dengue shock, with high sensitivity and precision

of 90.9% and 91.2% respectively. Interestingly, CNNs using both Pleth and IR ADC signals as

inputs, scored the highest maximum accuracy recorded.

Figure 4.3: Visualising Key Experiment 1 Results.

On Figure 4.5a, the CNN model’s architecture is presented, while in Figure 4.4 we can visualise

it more intuitively by looking at how the data propagates through the convolutional, pooling

and fully connected layers. However, in the latter figure, features such as dropout and batch

normalisation are not included in the illustration. For the training of the model, the Adam

optimiser with learning rate of 3e− 4 was found to be the best performing. The network was

trained for 200 epochs with a batch size of 16, while the validation set was defined as 20% of

the training set. The resulting training and validation curves can be observed in Figure 4.5b.

The curves show effective learning with validation and training components moving closely to

each other and no overfitting is observed. The curves seem to converge to an optimum at the

end of training. Overfitting was visible in longer epochs and in cases were no regularisation,

i.e. Dropout layers, was introduced.

The best performing model of this experiment was also tested on other patient data, foreign to

the training and test sets. This was not part of the design procedure but due to the resulting
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performance of the models, a further test was completed. Three patients who were admitted

with shock were chosen and selected signals were passed through the saved classifier. For each

patient, two tests were ran. One was using signals of 1 hour length extracted only 10 minutes

after the start of the PPG record and the second one was using the same length of signals, but

this time extracted 3 hours after the PPG record’s start. The results are illustrated in Table

4.3. From that, it is obvious that the classifier performed well on the foreign data, but it is also

obvious that signals that were extracted only 10 minutes after the PPG record’s start, were

classified far more accurately than signals extracted 3 hours after the PPG record’s start.

Figure 4.4: Visualising Experiment 1’s Best Performing CNN Architecture.

Patient ID
Time After PPG
Record Start

Duration of Signal Tested
Accuracy of Best
Performing Model

003-2109
10 minutes 1 hour split into 50 Spectrograms 0.89
3 hours 1 hour split into 50 Spectrograms 0.68

003-2110
10 minues 1 hour split into 50 Spectrograms 0.85
3 hours 1 hour split into 50 Spectrograms 0.73

003-2012
10 minutes 1 hour split into 50 Spectrograms 0.86
3 hours 1 hour split into 50 Spectrograms 0.76

Table 4.3: Experiment 1’s Best Classifier, Tested on Other Patient Data.
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(a)

(b)

Figure 4.5: Experiment 1: (a) Best Performing Model’s Architecture - CNN using IR ADC and
(b) Example Training and Validation Curves.

4.2.2 Experiment 2

In Table 4.4 the binary classification results on Experiment 2 are illustrated, presenting the

best performing models from each defined ML model type (1-3 from Table 3.3). Again, the

highest value in each metric is highlighted in red, while the lowest value is highlighted in yellow.

In Figure 4.6, the graphical representation of this data enables us to visualise and compare the

performance of different models. In the aforementioned table and figure, it might not be clearly

evident which model performs the best as both the CNN model using IR ADC signals and the

PCA model using Pleth signals perform equally well on the test set accuracy average and the

recall average. However, the CNN’s higher F1 score, due to the higher precision of the model,

and the fact that it has the lowest standard deviation in the test accuracy out of all models,

suggests that the CNN model using IR ADC signals, performs the best out of all models.

The worst performing model for this binary classification is the Baseline model using IR ADC

signals, which lacks behind the best performing model by 4% in the test accuracy average and

by approximately the same amount in recall, precision and F1 score. Interestingly, but not
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importantly, the PCA model using Pleth resulted in the highest maximum test accuracy of

97.5%, along with the CNN model using Pleth signals as an input.

The overall model performance is exceptional in detecting pre-shock and post-shock windows,

with very high precision and sensitivity scores and a low standard deviation.

Experiment 2

Metrics
Baseline using
IR ADC

PCA using
IR ADC

CNN using
IR ADC

Baseline using
Pleth

PCA using
Pleth

CNN using
Pleth

0.925 0.950 0.900 0.925 0.875 0.875
0.900 0.900 0.900 0.900 0.900 0.900
0.850 0.850 0.900 0.925 0.975 0.875
0.825 0.900 0.925 0.850 0.925 0.975

5 Fold Cross Validation
Test Accuracies

0.875 0.925 0.950 0.925 0.900 0.925
Min Test Accuracy 0.825 0.850 0.900 0.850 0.875 0.875
Max Test Accuracy 0.925 0.950 0.950 0.925 0.975 0.975
Test Accuracy Average 0.875 0.905 0.915 0.905 0.915 0.910
Test Accuracy St. Dev. 0.035 0.033 0.020 0.029 0.034 0.037
Recall Average 0.875 0.905 0.915 0.905 0.915 0.911
Precision Average 0.882 0.909 0.921 0.908 0.920 0.912
F1 Score Average 0.878 0.907 0.918 0.906 0.917 0.911

Table 4.4: Experiment 2 Numeric Model Results. The Best Performing Models for Each De-
fined Model Type (1-3) are Presented, for IR ADC-based Spectrogram Inputs and Pleth-based
Spectrogram Inputs.

In Figure 4.7a the structure of the best performing CNN model using IR ADC signals can be

seen. This model was trained for 150 epochs using Adam as the optimizer, with a learning rate

of 3e− 3, batch size of 32 and a validation size of 20% of the training data. Example training

and validation curves can be seen in Figure 4.7b, where adequate learning can be observed. The

validation curves follow the movement of the training curves closely. Some overshooting can be

observed in the validation set cures but this is expected given the limited data. Nevertheless,

no overfitting is observed and the learning seems to be converging adequately to an optimum.

Figure 4.6: Visualising Key Experiment 2 Results.
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(a)

(b)

Figure 4.7: Experiment 2: (a) Best Performing Model’s Architecture - CNN using IR ADC and
(b) Example Training and Validation Curves.

4.2.3 Experiment 3

For the third experiment, the overall model performance for this binary classification was much

poorer; yet successful. Results can be seen in Table 4.5 and those can be visualised better in

Figure 4.8, in similar fashion to the results presented for Experiment 1 and 2. It is evident that

again, CNN using IR ADC signals performed the best, with test accuracies as high as 96.8%.

The CNN’s average test accuracy is at 83.7%, outperforming that of the second best model’s,

by 3.8%. The same pattern can be seen on recall, precision and F1 score metrics, outperforming

the rest. The standard deviation of this model was the 4th lowest out of the 6 models presented

on the results table. The worst performing model is again the Baseline model using IR ADC

signals as an input. This model scored 21.9% points worse than the best performing CNN

model and also registered the highest standard deviation in KFCV test accuracies out of all

models. At 84.2% F1 Score Average, this model was able to classify pre-clinical shock signals

of a patient admitted with shock and post-clinical shock signals of the same patient.

The CNN architecture for the best performing model can be seen in Figure 4.9a, while sample
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validation and training curves can be seen in Figure 4.9b. The model was trained at 700 epochs

using the Adam optimizer with a learning rate of 3e− 4, batch size of 23 and a validation set

consisting of 20% of the training data. The training and validation curves seem to be converging

adequately and no continuous overfitting is observed. However, the validation curve seems to

overshoot at many points and looks more noisy, even after aggressive regularisation is added

to the model.

Experiment 3

Metrics
Baseline using
IR ADC

PCA using
IR ADC

CNN using
IR ADC

Baseline using
Pleth

PCA using
Pleth

CNN using
Pleth

0.548 0.742 0.806 0.645 0.806 0.774
0.581 0.774 0.839 0.806 0.806 0.645
0.548 0.613 0.839 0.677 0.839 0.871
0.613 0.742 0.968 0.710 0.710 0.839

5 Fold Cross Validation
Test Accuracies

0.800 0.700 0.733 0.833 0.733 0.867
Min Test Accuracy 0.548 0.613 0.733 0.645 0.710 0.645
Max Test Accuracy 0.800 0.774 0.968 0.833 0.839 0.871
Test Accuracy Average 0.618 0.714 0.837 0.734 0.779 0.799
Test Accuracy St. Dev. 0.094 0.056 0.076 0.073 0.049 0.084
Recall Average 0.617 0.713 0.837 0.735 0.780 0.798
Precision Average 0.632 0.723 0.847 0.746 0.798 0.821
F1 Score Average 0.624 0.718 0.842 0.740 0.789 0.809

Table 4.5: Experiment 3 Numeric Model Results. The Best Performing Models for Each De-
fined Model Type (1-3) are Presented, for IR ADC-based Spectrogram Inputs and Pleth-based
Spectrogram Inputs.

Figure 4.8: Visualising Key Experiment 3 Results.
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(a)

(b)

Figure 4.9: Experiment 3: (a) Best Performing Model’s Architecture - CNN using IR ADC and
(b) Example Training and Validation Curves.

4.2.4 Experiment 4

Experiment 4 is a multi-class classification problem, onto the combination of classes presented

in Experiments 1 and 2. The results are portrayed in the same way as in previous sections, in

Table 4.6 and graphically on Figure 4.10. From those, it is evident that the Baseline model

using Pleth signal inputs, outperformed the previously dominant model which was a CNN using

IR ADC signals. Specifically the Baseline model, scored 88% average test accuracy, surpassing

the second best model by 1.2% points. Even though the results of all models were surprisingly

close, the Baseline Model using Pleth outperformed all the rest on recall, precision and F1

score averages. The worst performing model in this case is the PCA model using Pleth signals,

with an average test accuracy of 83.1% and F1 Score of 82.3%. While the overall classification

performance was lower than that of individual performance presented in Experiments 1 and 2,
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the results are very promising, with high sensitivity and precision.

Experiment 4

Metrics
Baseline using
IR ADC

PCA using
IR ADC

CNN using
IR ADC

Baseline using
Pleth

PCA using
Pleth

CNN using
Pleth

0.900 0.837 0.801 0.837 0.825 0.913
0.800 0.813 0.938 0.925 0.837 0.838
0.887 0.875 0.850 0.825 0.855 0.875
0.887 0.813 0.900 0.900 0.825 0.887

5 Fold Cross Validation
Test Accuracies

0.875 0.887 0.850 0.913 0.813 0.825
Min Test Accuracy 0.800 0.813 0.801 0.825 0.813 0.825
Max Test Accuracy 0.900 0.887 0.938 0.925 0.855 0.913
Test Accuracy Average 0.870 0.845 0.868 0.880 0.831 0.867
Test Accuracy St. Dev. 0.036 0.031 0.047 0.041 0.014 0.032
Recall Average 0.870 0.845 0.870 0.880 0.815 0.867
Precision Average 0.879 0.854 0.865 0.895 0.832 0.865
F1 Score Average 0.874 0.849 0.867 0.887 0.823 0.867

Table 4.6: Experiment 4 Numeric Model Results. The Best Performing Models for Each De-
fined Model Type (1-3) are Presented, for IR ADC-based Spectrogram Inputs and Pleth-based
Spectrogram Inputs.

Figure 4.10: Visualising Key Experiment 4 Results.

The structure of the best baseline NN model for this experiment is much simpler than previously

seen CNN structures. This is presented in Figure 4.11a. The model was trained with 150

Epochs, a learning rate of 1e − 3 using the Adam optimizer and a validation set consisting of

10% of the training data. The smaller validation set proved to be yielding better test results

in this model. The validation curves follow the movement of the training curves implying

that the model is learning, but the validation loss seems to be converging less effectively than

the validation accuracy. Moreover, it is very noisy even though no clear overfitting trend is

observed. This can be attributed to a non-representative validation set due to its size, causing

it to fluctuate more than expected.
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(a) (b)

Figure 4.11: Experiment 4: (a) Best Performing Model’s Architecture - Baseline using Pleth
and (b) Example Training and Validation Curves.

4.2.5 Experiment 5

The results for this multi-class classification experiment are laid out in Table 4.7 and presented

graphically on Figure 4.12. Not surprisingly, the best performing model is once again the CNN

with IR ADC signals as an input. The average test accuracy of this model is at 76.8%, only 0.2%

higher than the second best performing model which is a Baseline model using IR ADC signals.

However, the best performing model has a much higher average F1 score and that is why it

stood out from the rest. The model that scored the lowest average accuracy on the test set is

the PCA model with Pleth signals as an input. However, the lowest F1 score was registered

by the CNN model using Pleth signals. The best performing model managed to classify the

6 classes adequately yet, Figure 4.13 shows two sample confusion matrices, outlining perfectly

the character of the majority of the tests that were carried out. From those it is evident that

most misclassifications occurred on Class 5, that is window segments corresponding to a post

clinical shock signal of a patient that was already admitted with dengue shock. These windows

were falsely classified as either post-clinical shock signals of a patient that was admitted with no

shock or the pre-clinical shock signals of a patient that was admitted with shock. Interestingly,

this pattern was observed in all model types and most tests that were ran for this experiment.
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Experiment 5

Metrics
Baseline using
IR ADC

PCA using
IR ADC

CNN using
IR ADC

Baseline using
Pleth

PCA using
Pleth

CNN using
Pleth

0.720 0.710 0.785 0.688 0.742 0.753
0.796 0.839 0.731 0.753 0.699 0.742
0.761 0.783 0.739 0.728 0.728 0.783
0.750 0.674 0.794 0.772 0.728 0.750

5 Fold Cross Validation
Test Accuracies

0.804 0.772 0.794 0.804 0.707 0.783
Min Test Accuracy 0.720 0.674 0.731 0.688 0.699 0.742
Max Test Accuracy 0.804 0.839 0.794 0.804 0.742 0.783
Test Accuracy Average 0.766 0.755 0.768 0.749 0.721 0.762
Test Accuracy St. Dev. 0.031 0.058 0.028 0.039 0.016 0.017
Recall Average 0.745 0.755 0.769 0.749 0.722 0.762
Precision Average 0.763 0.772 0.781 0.747 0.725 0.664
F1 Score Average 0.754 0.763 0.775 0.748 0.723 0.710

Table 4.7: Experiment 5 Numeric Model Results. The Best Performing Models for Each De-
fined Model Type (1-3) are Presented, for IR ADC-based Spectrogram Inputs and Pleth-based
Spectrogram Inputs.

Figure 4.12: Visualising Key Experiment 5 Results.

(a) (b)

Figure 4.13: Sample Confusion Matrices from Experiment 5 Portraying Important Classification
Characteristics. Confusion Matrices were Obtained in Different Folds of the Best Performing
Model. For Class Descriptions please refer to Table 4.1.
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The best performing model’s CNN architecture is presented in Figure 4.14a. This model was

trained on 700 epochs, with the Adam optimizer and a learning rate of 3e−4. A batch-size of 23

was used and the validation set was 20% of the training data. An example of the training curves

are presented in Figure 4.14b. Even though aggressive regularisation was added throughout the

model architecture as seen in Figure 4.14a, the validation loss curve seems to be overshooting at

multiple points. This is a similar behaviour to that observed in Experiment 3 training curves,

but the magnitude of the overshoot is much higher in this case. This can be attributed to an

unrepresentative validation set, due to the small dataset used. Nevertheless, the model seems

to be converging effectively, with the overall movement in the validation set matching that of

the training set. The result is a high train and validation accuracy and low train and validation

loss.

(a)

(b)

Figure 4.14: Experiment 5: (a) Best Performing Model’s Architecture - CNN using IR ADC
and (b) Example Training and Validation Curves.
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4.2.6 Experiment 6

For Experiment 6, a regression LSTM model was built and tested. The output of this regression

model was then inputted into a pre-trained classifier and classification results on the regression

output were recorded. These are presented in Figure 4.8. Two different models were used

as classifiers, suggesting that our LSTM models received two different inputs. As described in

earlier sections, one was the raw spectrogram windows while the other was the PCA transformed

spectrogram windows. This is distinguished in the aforementioned figure. Furthermore, for

each of the classification models, both IR ADC and Pleth signals were tested and results were

recorded. The training set consisted of total of 761 spectrogram windows, where only 77 of them

belonged to the post clinical shock class. It is important to note that the Recall, Precision and

F1 Score averages included in the table, refer to the macro-average scores, accounting for the

imbalanced dataset. The macro average was chosen, as performance in both classes is equally

important. However, the test accuracy averages portray the micro-average and that is why the

score is significantly higher.

No values are highlighted in this Table as the macro-average scores presented, all lie between

45% and 55%. In a binary classifier, this performance is considered poor [15]. However,

accounting for data imbalances, if we only look at the class that is mostly represented in the

training data, that is the pre-clinical shock windows of a patient admitted with shock, we can

see that the classifier’s performance is good with the best model scoring an average accuracy of

99%. When combining the two classes, this accuracy falls to 89%, as seen on the results table,

due to the misclassifications of the second class.

The architecture of a sample LSTM network used for extracting the results is seen in Figure

4.15. The network was optimised using average test accuracies, even though they are not

representative of the whole data. That was done for the sake of experimentation and due to

the lack of data. The network was trained on a batch size of 80, a window length of 16 and an

Adam optimizer with a learning rate of 0.001. The model was trained for a total of 300 epochs.
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Experiment 6

PCA of 80 Components as
LSTM Input, using PCA
Classification Model as
Classifier

Full-Length Spectrograms
as LSTM Input using
Baseline Classification
Model as Classifier

IR ADC Pleth IR ADC Pleth

5 Fold Cross Validation
Test Accuracies

0.870 0.830 0.770 0.890
0.840 0.870 0.850 0.780
0.750 0.860 0.770 0.880
0.710 0.890 0.840 0.830
0.850 0.870 0.830 0.830

Min Test Accuracy 0.710 0.830 0.770 0.780
Max Test Accuracy 0.870 0.890 0.850 0.890
Test Accuracy Average 0.804 0.864 0.812 0.842
Test Accuracy St. Dev. 0.062 0.020 0.035 0.040
Macro-Average Recall Average 0.500 0.550 0.510 0.530
Macro-Average Precision Average 0.450 0.520 0.490 0.520
Macro-Average F1 Score Average 0.474 0.535 0.500 0.525

Table 4.8: LSTM Classification Model Results (Averages of Macro-Averaged classes). On
the Left Column the Results from the PCA-based Implementation are Portrayed using 80
Components to Construct the Input Feature Vectors. On the Right Column, Classification
Results are Portrayed for the Full-length Spectrogram Feature Vectors. The Results Portray
the Classification Performance on the Regression Output from the LSTM Model.

Figure 4.15: Sample LSTM Model Architecture.

4.3 IR ADC vs Pleth

In 4 out 5 classification experiments, CNNs with IR ADC signals as an input were chosen as the

best models. However, if we take the top 3 models for each experiment for all 5 classification

experiments, then 8 out of the 15 best performing models were using Pleth signals as an input.

Another interesting statistic is that when comparing Baseline models,in 4 out 5 Experiments,
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using the Pleth signals resulted in a better performance than when using IR ADC signals.

When comparing PCA models though, in 3 out of 5 experiments, IR ADC outperformed Pleth

signals. For CNN models, IR ADC signals outperformed Pleth signals in 5 out of 5 Experiments.

Finally, in multi-class classification experiments, the performance of models using Pleth signals

decreased by a proportionately higher amount compared to the performance of IR ADC models.

4.4 ML Model Overview

The ML models were designed and built successfully, with the grid-search methodology em-

ployed in optimizing them proving to be effective.

In general, Dropout and Regularisation layers proved to be highly needed in order to reduce

overfitting in the data and enabled the models to perform adequately well in the test sets,

consistently. These model features were used in all model types and designs. In Figure 4.16,

the effect of Dropout and L2 Bias Regularisation are illustrated, where the curves on the right

appear to be following the training curves more closely [15]. Specifically, this relationship is

most important for the validation loss curve. Another important feature observed in all models,

was kernel initialisation. This allowed for learning to take place more effectively, often requiring

less epochs. Lastly, features such as Data Augmentation were found to be corrupting our inputs

with too much noise, leading to poor performance overall. There were some rare exceptions,

such as in Experiment 1, where a random rotation of 0.2 resulted in improved performance of

the CNN model.

The baseline model performed surprisingly well on the raw spectrograms of both Pleth and IR

ADC overall, and was even chosen as the best performing model for Experiment 4. Baseline

architectures were simpler compared to those of CNN and on average, inference times were

lower. ML model type 2, involving PCA, performed the worst overall when compared with

the other two models, except in Experiment 2 and 3, where it performed better than the

baseline model. The CNN models had the longest and most complex structures, particularly in

the feature extraction section of the network. Nevertheless, CNNs proved powerful even with
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(a) Before Regularisation - Overfitting Present. (b) After Regularisation - No Overfitting Present.

Figure 4.16: The Effect of Regularization on Model Training.

the few data points we possess. Lastly, looking at the LSTM model and Experiment 6, the

performance was very poor overall when looking at the macro averaged scores, but not when

looking at the dominant class only.

For the sake of completeness, Figures 4.17 and 4.18 present example model summaries of all

model types explored in this study, as defined in Table 3.3. Particular attention should be paid

to the number of trainable parameters per model type.

Figure 4.17: Sample Regression LSTM Model Summary.
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(a) Sample CNN Model Summary.

(b) Sample Baseline Model Summary.

(c) Sample PCA Model Summary.

Figure 4.18: Sample Model Parameter Summaries of Classification Models (Binary case).



Chapter 5

Critical Evaluation and Discussion

5.1 Experimental Insights

The results presented in Section 4 carry valuable insights for the link between PPG and dengue’s

physiological parameters; focusing on dengue shock events. The series of experiments gradually

built up the complexity of the analysis, from binary to multi-class classifiers for dengue shock

detection, and finally to regression for the evaluation of PPG’s predictive capabilities.

5.1.1 Dengue Shock Detection and Monitoring using PPG

The results from Experiments 1 to 5, as presented in Section 4, portray a strong correlation

between recorded PPG signals and the physiological parameters observed in multiple patients.

Even with little data available for the training of our algorithms, Experiment 1 highly suggests

that PPG signals carry enough information to distinguish between patients who were admitted

with shock and those that were admitted with no heavy complications due to the disease.

As our datasets were balanced when training and testing, the results can be representative

of the model performance without further processing. A KFCV average accuracy of 90.9% in

combination with a 90.9% recall average and a 91.2% precision are very encouraging, suggesting

that PPG could be used by clinical professionals in evaluating the severity of a diseased patient,

72
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i.e. whether he is experiencing dengue shock, without the need of radiology or ultrasounds that

can be costly procedures [18]. In the same experiment, the best CNN model was deployed

onto three other patients whose signals were not used in training or testing. As Table 4.3

shows, the model was able to correctly classify PPG signals of patients being admitted with

shock, reaching accuracies of up to 89% when the signal segments were extracted only 10

minutes after the PPG record start. On the exact same table however, when using the signal

segments extracted 3 hours after the start of the PPG record, the classification outcomes

were poorer, with the maximum accuracy being at 76%. There are many reasons why this

could be the case. For example, it could be that the admitted patients responded well to

the administration of intravenous fluids and other symptom alleviating practices, leading to

their vitals reflecting this physiological improvement. Because of that, the classifier might

have characterised some spectrogram windows as ”healthy”, whereas in reality the patients are

unlikely to experience that in such short time-frame [20]. A better explanation for the fall in

the accuracy could be the algorithm’s poor generalisation abilities causing it to misclassify the

different physiological phases during a shock. For the evaluation of this, more data would be

required and possibly a more detailed characterisation of signal instances, pinpointing changes

in physiological parameters in time. Unfortunately, the dataset provided for this study did not

have this capacity.

Experiments 2 and 3 are cardinal, as the results allow us to evaluate the capabilities of PPG

signals being used as a monitoring system, in a clinical environment, or even at home if cir-

cumstances allow. The results we have collected, given that the scope of this project was

exploratory, are exceptional and suggest that PPG is effective for use in clinical decision sup-

port. In Experiment 2, we were able to achieve high KFCV average accuracies, at 91.5%, along

with high recall and precision averages. If enough data is available for the design and imple-

mentation of a well generalising model, or computational resources are readily accessible for

a personalised baseline to be established, PPG signals could be used in real time monitoring

of dengue patients, looking out for imminent dengue shock events. This will not only lead to

faster and more effective care for the patients, but it will also equip health professionals and

clinics with necessary information to work pro-actively into managing the logistics related to
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patient support and allocate the necessary resources to effectively house the critically ill. The

same is also valid for patients that were admitted with DSS to begin with, as it is equally

important to monitor for further instances of shock. That would enable for the evaluation of

the current approach for treatment and possibly suggest a more aggressive fluid administration

[46]. Experiment 3 targetted just that scenario and while results are not as good as those of

Experiment 2, having a KFCV average accuracy of 83.7%, they are still sufficient to suggest

that a relationship can be established. Looking at the recall metric in Table 4.5, we can see

that it is significantly lower than that of the previous two experiments. Even though they are

not directly comparable, this suggests that this model misclassifies windows corresponding to

post-clinical shocks. That is expected since the patient involved in training and testing was

already admitted with DSS and therefore, the pre-clinical shock signal is likely to possess some

similar features to the post-clinical shock signal. If we had a larger dataset we would be able to

examine whether or not the performance of the classifier is linked to the volume of data used

in training. Therefore, this can be part of future research.

Building up from binary classifiers, the results from Experiments 4 and 5, allow us to evaluate

the information capacity of spectrogram windows. For example, while Experiment 4 resulted in

a lower KFCV average accuracy and F1 scores compared to the individual binary classification

Experiments 1 and 2, it was still able to classify the 4 classes with an average accuracy of 88%

and an F1 score of 88.7%. This means that we can successfully classify and distinguish between

signals of patients who were admitted with shock, those that were admitted without shock,

pre-clinical shock signals and post-clinical shock signals. This suggests that the spectrogram

of a patient who never developed DSS can be distinguished from that of a patient who is

about to have a DSS episode in the near future. At the same time we can distinguish between

spectrograms of a patient admitted with DSS and spectrograms extracted post to a clinical

shock. Again, even though a lot of care was taken in standardising the data and avoiding data

leakage, we cannot rule out the possibility that patient signals might possess bias that a classifier

might pick onto. Therefore, while the findings support the ability of PPG to characterise and

carry information of physiological parameters caused by dengue, further research with more

data needs to validate these results.
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Experiment 5 is the last multi-class experiment performed, combining all of the available classes

from Experiments 1,2 and 3. The resulting KFCV average accuracy and F1 score is much lower

than all of the 4 previous experiments. By looking at the confusion matrices in Figure 4.13, the

main cause of this poor performance is the misclassification of post-clinical shock spectrograms

of a patient who was admitted with shock. From the same figure, it is evident that these

class’ windows are either classified as the post-clinical shock windows of a patient who was not

admitted with DSS or wrongly classified as the pre-clinical shock windows of a patient who was

admitted with DSS. While the latter can be easily attributed to the fact that both post-clinical

shock classes are very likely to posses similar features, the latter is more counter-intuitive.

One explanation would be, once again, the low volume of data used in training. Even though

the classification on the same 2 classes was successful in Experiment 3, the complexity of this

experiment is much higher and therefore, the algorithm, given this data, failed to generalise

sufficiently.

5.1.2 Dengue Shock Prediction using PPG

When considering the macro-averaged metrics, Experiment 6 results are very poor, with the

classification appearing to be random. Due to the lack of data, we were not interested in the

regression performance, due to the number of features present in each sample. That is because

the high dimensionality of the feature vectors results in a higher complexity, which in turn

results in poor performance when only few hundreds of data points are present; in our case just

a few hundreds of spectrograms. Even when using PCA, with only 80 features describing our

network, training mean squared errors were very high, as expected. Therefore, using a classifier

allowed us to simplify the procedure, only caring whether or not an output characterised a pre

or post-clinical shock window. While the results look disappointing, if we only focus on the

class with the most representations in training, that is the pre-clinical shock class, given an

input, our regression LSTM model was able to output a feature vector that our pre-trained

classifier classified correctly in 99% of cases. While this is not enough to draw a complete and

thorough conclusion, it may suggest that PPGs can indeed be used sequentially for predicting



76 Chapter 5. Critical Evaluation and Discussion

future events. Nevertheless, the results can be intriguing but future research needs to further

investigate this relationship, using larger datasets and longer PPG records. Especially since

LSTMs can be prone to overfitting [13]. Unfortunately for us, for the current implementation,

only patient 003-2009 was eligible for testing a time-series model, which was not ideal for this

purpose.

5.1.3 IR vs Pleth

Throughout our study, experiments were ran on both IR ADC and Pleth signals individually

and then compared. As presented in Section 4, IR ADC signals outperformed Pleth signals in 4

out of 5 classification experiments. This can suggest that the former, is more information rich

than the latter, allowing for more meaningful features to be extracted when using it as an input.

As a result, IR ADC may be linked more effectively with the physiological characteristics of a

patient. Interestingly however, Pleth outperformed IR ADC in 4 out 5 baseline models which

might suggest that Pleth signals are less noisy outright, and just by using its time-frequency

features we can still get adequate feature representations, without the need of further FE i.e.

using a CNN. For the same reason, less complex models can perform better on Pleth than IR

ADC. Therefore, while IR ADC signals result in higher classification performance, Pleth might

be more useful when computational resources are not freely available. The opportunity cost

that exists should be considered in future research but given the advancements in computing,

there is no large limiting factor in using either of the two signals. To conclude, it would be nice

to see other filtration and pre-processing methods implemented on both IR ADC and Pleth

signals, and observe the effect on the performance of our models. The tight time frame of this

project did not allow for such implementations, so it is suggested that this is explored in future

research.
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5.2 Feature Extraction and Machine Learning Review

Performing time-frequency analysis using STFT on the filtered PPG signals, and using the

output spectrograms as an input to our ML models, proved to be an effective FE approach,

resulting in the successful implementation of this study’s experiments. The spectrum of fre-

quencies chosen to form the input feature vectors were chosen based on empirical data and

allowed us to avoid using redundant features which would lead to an increased dimensionality.

The spectrograms themselves hold enough information to result in a successful link between

signal windows and physiological parameters of dengue, deeming our pre-processing approach

and initial FE process fruitful. The Baseline model, as the name suggests, was built as a refer-

ence point for model types 2 and 3. Its performance on all experiments is unexpectedly better

than imagined, which can only validate the effectiveness of using the time-frequency analysis

to extract information from PPG signals. In later stages, CNN FE resulted in improved ex-

perimental results overall, suggesting that the processed input spectrogram ”images” could be

manipulated further to pick up finer feature details. This not only proves that CNNs and deep

learning can be powerful tools in clinical diagnosis and decisions support, but also confirms

the abundance of information present in PPG. Both ANN and CNN models were effective, but

CNNs have the leading edge which is attributed to their powerful FE capabilities.

No clear evaluation is possible on the effect of the signal window length on model performance.

Taking as an example Experiments 2 and 3, the former, classified signal window inputs of 1.12

minute length, whereas in the latter, the window length was decreased to 1 minute. Experiment

3’s results are poorer than Experiment 2’s. However that could be very well attributed to the

amount of data used in training (100 windows per class vs. 77 windows per class) and the

complexity of the experiment. Even though it seems like window size did not cause the lower

performance, further exploration on that matter is required.

It is intriguing to see that the results presented in the previous section portray the ineffectiveness

of ML model type 2, using PCA, in Experiments 1,4 and 5 when compared to the Baseline

and CNN models. In contrast, the PCA model performed impressively well in Experiment

2, having the same KFCV average accuracy as the best performing model, but lacked behind
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the CNN model in the precision and F1 metrics. If we were to consider the bigger picture of

both models, in a clinical scenario, the PCA model might have been preferred over the CNN

model. Focusing at the number of trainable parameters of the former compared to those of the

latter, as illustrated in Figure 4.18c and 4.18a respectively, we can see that the PCA model

has approximately 86, 000 less parameters. This quantifies the reduced complexity of the PCA

model, making it attractive for use in wearable technology. Having that in mind, we could have

selected the PCA model over CNN. The same is valid for Experiment 3, but this time the PCA

and CNN models’ results have a much larger gap between them. As a result, the CNN might

still be preferred over the PCA model. An important distinction that needs to pointed out, is

that in both Experiments 2 and 3, the classes used for training were formed using signals of the

same patient in each experiment. As PCA was applied onto the population of the training set,

having signals of different patients between classes, such as in Experiments 1,4 and 5, might

have had an adverse effect on the results and that is why the PCA model might have under-

performed in those specific experiments. In general, dimensionality reduction could be very

beneficial in reducing the computational resources required and can aid in the deployment of

more flexible applications, especially with regards to wearable technology and clinical decision

support devices. Given our results, using PCA as a form of FE (and subsequently dimensionality

reduction) before a ML algorithm could be effective in some cases. To estimate the level of

generalising performance further exploration is required, preferably with more data.

Models in general benefited from regularisation as seen from the best performing model archi-

tectures. This implies the presence of noise in the data and in cases where IR ADC was used,

regularisation was more aggressive, with higher dropout rates, suggesting that IR ADC signals

were corrupted with more noise.

Even though stratified KFCV was used in training all of the models, in many cases the perfor-

mance on the test set did not match that on the training and validation sets. There are many

reasons on why that could be the case but one could be the amount of noise present in the data.

Particularly, in Experiments 3, 4 and 5, it is obvious by their training and validation curves

that the validation set was not fully representative of the test set. One reason for that could

be that as we are elapsing through time, PPG signals can change a lot. For example a moment
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of stress experienced by a patient can lead to a much different time-frequency representation

in one of the windows present in validation set.

We must also highlight that the amount of time it takes for a PPG signal to go through the pre-

processing steps and the ML algorithms is of great importance. That’s because computational

efficiency and inference are vital in a clinical setting. While state-of-the-art algorithms do

exist for efficient filtering, windowing and STFT calculations on wearable devices, deploying

deep learning models onto wearable technology has its bottlenecks [38]. These are mostly

related to parallel matrix multiplications and bandwidth restrictions [11]. If an alternative

approach i.e. cloud computing, is not on the table, then more lightweight algorithms along

with dimensionality reduction practices need to be employed. This was outside the scope of

this experiment due to its early stage, but highly important to consider in future research on

the topic.

Lastly, as it has been already said, the study would greatly benefit from more data. This would

allow for more complex experiments to be carried out and better evaluation of the ones we

already completed. Still, experiments were completed successfully and with very propitious

results. Moreover, since this is the first study ever done on this specific topic, the results can

be used as a guide for future research or even set the baseline for experiments to follow.

5.3 Remarks on the Clinical Dataset

One of the most time-consuming and challenging parts of this study was understanding, pro-

cessing and structuring the raw clinical files of the dataset. A challenging part of this process

was the extraction of the times of shock or events associated with shock e.g. ascites. This was

of utmost importance for this study, as ML algorithms and all of our experiments are highly

dependent on the accuracy of the registered event times. While the event lookup itself was a

simple query, the date-times in the raw clinical and signal files did not match exactly. In some

cases there were contradicting records, with one file registering a different start time of the PPG

records from the other. It was then realised that the filenames themselves were automatically
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named after the date-time of the PPG record start. This is an example of the uncertainty in the

dataset that made our work more challenging and required time-consuming experimentation

and debugging. Of course, this is expected in a newly formed dataset.

Another concern of ours, was the method of registering clinical events, and symptoms, from

the healthcare professionals. As this was predominantly a manual procedure, the human error

may have had an influence over our results. In some experiments, even a 10 minute difference

between the time of the event and the recorded time might have caused a severe disruption to

the results. Patient 003-2012 can be an example showcase of an incorrect data entry, as seen

on Figure 3.7b. While the PPG signal seems to flat-line in around the middle of the recording,

the registered end time of the PPG was much later. Conclusively, we still had to assume that

the records were accurate, but in some cases we chose to avoid data that looked corrupted or

inaccurate.

5.4 Proposal for Future Research

Given the project’s scope and exploratory nature, further study needs to be conducted for

the validation of our results and more importantly, focus on the capability of the constructed

models in generalising on a larger datasets, with more diverse feature distributions. Given the

previous suggestion and looking at our study’s results, a larger dataset can greatly influence the

quality of modelling and creates opportunities for a more thorough exploration of the designed

experiments; such as in predicting a shock using an RNN-based model. On top of that, it can

enable the design of more complex experiments i.e. time-specific predictions of DSS. Adding

to the benefits of larger datasets, more data would enable greater flexibility when it comes to

choosing signal data to use in ML modelling, by allowing the use of SQIs in a more structured

manner, setting SQI thresholds for rejecting low-quality signals; instead of choosing the best

out of the ”worst”.

In future work, it is also principal that we consider data originating from different demographics.

For example, there are substantial differences between infections in adults and children [54].
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If we are to create models that generalise well for the wider population, this is a topic that

should be researched in more depth, with children data. Moreover, as there are multiple PPG

collection sites e.g., wrists and fingers, tests should be ran to compare these and the protocols

employed in collection.

In the design and implementation stage of the project we were very much restricted by time and

therefore, we weren’t able to explore some interesting data processing and ML methodologies

that were encountered during our research. First, more PPG filtering techniques could be

explored, such as wavelet denoising, for artefact rejection. Even though we did not experience

any setbacks with Butterworth filtering, in future work we should examine the effect of noise

onto model performance in more depth.

It would be interesting to explore the length of signal segments forming the inputs of our ML

algorithms. We have tested 1 and 1.2 minute segments to create our feature vectors and the

results were positive. However, could we achieve similar performance with less features? Doing

so would result in finer time analysis and lower ML inference times.

Moving on to FE, it would be interesting to see how different methods compare to our cho-

sen approach. For example, even though STFT proved sufficient, wavelet analysis could be a

better alternative given that it represents the signal in both time and frequency components.

Another FE approach that might be worth exploring is the formation of ML input feature

vectors comprising of a combination of SQIs, calculated during the early data processing stage.

As mentioned earlier, not all SQIs would be appropriate for this purpose, but statistical fea-

tures such as skewness and kurtosis do carry useful information to characterise different signal

segments.

Looking back at out ML implementations, an alternative to LSTM-based models for the pre-

diction of severe dengue parameters could be models utilising Gated Recurrent Units (GRUs).

While GRU and LSTM cells exhibit similar behaviour and are both based off RNNs, GRUs

cam be more easily optimized due to their simpler strucutre. Moreover, GRUs can perform rel-

atively better on smaller datasets, which could be of benefit to our implementation. However,

GRUs are relatively new and in theory, they can ”remember” shorter sequences compared to
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LSTMs, which can be important in a clinical scenario such as ours. Nevertheless, GRUs are

definitely worth exploring in future research. [15]



Chapter 6

Conclusion

The novelty of the project is of no dispute. The newly formed OUCRU dataset was studied

successfully, allowing us to explore multiple disciplines surrounding dengue’s clinical decision

support and PPG devices. From building data processing pipelines, to extracting PPG features

and designing, as well as implementing machine learning algorithms, this project has a lot to

give. Starting with the dataset itself, we were able to successively extract and structure raw

data, not only allowing us to carry out necessary feature extraction steps, but also providing

a well-rounded overview of the dataset’s capabilities; essential for influencing further research.

Our signal processing techniques, along with methodology employed in the analysis of the

clinical and PPG data, were successfully designed and implemented, allowing for an in-depth

exploration of ML algorithms for the classification and prediction of severe dengue. A set of

well defined experiments were conducted meticulously, presenting the undisputed relationship

between PPG and the physiological parameters experienced by dengue patients. Most impor-

tantly we have explored in-depth how ML algorithms can utilise PPG in the detection of various

phases of pre and post DSS instances, with high sensitivity and precision. As a complemen-

tary step, we have evaluated the predictive capabilities of PPG, utilising their time-frequency

features, with the help of LSTM networks. Even though results on this last experiment were

underwhelming, the information obtained is of equal importance to the successful experiments,

as the results highly encourage further research on verifying the correlation between sequential
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PPG windows. The data at our disposal was limited but we managed to design and implement

fruitful classification experiments, built and optimised ML models with good generalisation

performances and extensively evaluated our results and methodology. Conclusively, the project

can certainly act as a strong foundation for further research and encourage an era of inexpen-

sive and effective clinical decision support developments to better manage dengue epidemics,

provide more effective care and most importantly, minimise the loss of human lives.

As a final note, we should emphasise that while a diagnostic tool is of utmost importance,

doctors and other health professionals are a vital part of the equation. We are not trying

to substitute professionals, we are simply trying to contribute towards a more efficient, cost-

effective, timely and accurate diagnosis.
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Appendix A

Code Listings and Examples

Git software was used for the management and organisation of this study’s code implementa-

tions. A very useful tool that was utilised is Sphinx, allowing for the automated generation of

documentation for the code listings.

Example code listings and documentation can be found on:

https://p-a-ha.github.io/fyp2021-ph720/_examples/tutorial/index.html

For completeness, the project’s Github Page can be seen on:

https://github.com/P-A-Ha/fyp2021-ph720
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Appendix B

Project Management

The Agile methodology was employed throughout the project. This process can be summarised

with the following principles.

• Measuring progress by evaluating software performance

• Reflect on practices regularly

• Simplify processes without compromising quality

• Adapt to challenges without drifting from the main goal

• Pay attention to the technical details of the project

• Consistency of work

I strictly adhered to the aforementioned strategy to successfully complete this study. A Gantt

chart, demonstrated in the next page, was set for the control and management of our workflow

and was followed reverently. For the file management I used Google Drive, Github and Overleaf

to back-up all of the files that I created or used in this study. This procedure was carried out

daily, to ensure no setbacks. The project was completed as it was originally planned, with all

checkpoints being met.
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Appendix C

Plots of Pleth Signals

(a) (b)

(c) (d)

Figure C.1: Visualising the Patients’ Pleth Signals along with the Shock Events Captured
within the PPG Record - Part 1.
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(a) (b)

(c) (d)

(e)

Figure C.2: Visualising the Patients’ Pleth Signals along with the Shock Events Captured
within the PPG Record - Part 2.



Appendix D

Etchics

Our study did not require any approval from Imperial College’s Research Ethics Committee

(ICREC). All conducted experiments were done diligently, paying attention not to breach any

privacy barriers. Moreover, patient data was processed anonymously. Finally, the responsibility

of conducting a study that is accurate, sensible and free of bias, governed our project.
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