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Abstract
Large scale medical datasets and electronic health records have become increasingly
common, prompting the creation of clinical decision support systems which utilise data
to enhance health care. Tools have been designed to predict the likelihood of infection,
automate drug dosing and prescriptions, and evaluate a patient’s risk of death. Adop-
tion, however, remains low due to inherent issues, most notably, concern from clinicians
regarding the quality of recommendations and lack of transparency about how results
are obtained.

This report covers the design and implementation of a system that uses laboratory test
data to retrieve and present information relevant to a current patient, allowing clinicians
to make quicker diagnoses and create tailored treatment plans based on past data. Thus,
using the increasing amount of healthcare data without impinging on clinicians’ diagnosis
and decision-making process and avoiding the typical objections to automated systems.

The proposed solution incorporates the results of dimensionality reduction and clustering
algorithms into an interactive, web-based similarity retrieval application, demonstrating
the potential of unsupervised-learning based tools in clinical settings.
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Chapter 1

Introduction

1.1 Motivation

With electronic health records (EHR) having become commonplace in many countries [1,
2], a wealth of information is being recorded for every patient, creating large sets of
medical data. This comes as a replacement to traditional paper-based records which
aside from consuming an increasing amount of space, can impact access to timely medical
care [3]. Information ranging from basic demographic data such as age and gender,
administration data such as date of admission and discharge, and laboratory test results
and treatment plans are increasingly being recorded electronically [4, 5]. This gradually
increasing availability of data opens the door to some advanced clinical decision support
systems (CDSSs) which can aid clinicians in making faster, better informed decisions [6].

The growing adoption of electronic health records has led to the creation of systems
that provide clinicians with electronic alerts and reminders, patient-specific diagnostics,
and automated treatment recommendations [7, 8]. Specific tools have been designed to
predict the likelihood of infection [9], automate drug dosing and prescriptions [10, 11]
and evaluate a patient’s risk of death [12] or disease severity [13]. Whilst some systems
have demonstrated the ability to improve the quality of care [14, 15], the adoption of
clinical decision support systems remains low due to inherent issues with EHRs and the
automation of healthcare decisions [16]. EHR platforms and CDSSs are typically im-
plemented independently, leading to incompatibilities and inconsistencies in how data is
recorded [17]. Furthermore, the black-box approach taken by these systems has induced
concern from clinicians regarding the quality of recommendations [18, 19] and lack of
clarity about how results are obtained [20].

Clinicians typically rely on existing knowledge when making decisions and consider
previous patients when performing a diagnosis or formulating a treatment plan [21,
22]. Thus, this project aims to use laboratory test data to cluster patients, creating
visualisations that can be used to inspect similar patients, their symptoms, test results
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Report structure

and outcomes, facilitating the re-use of previously obtained data.

1.2 Project definition

Performing patient similarity retrieval and detecting patterns in laboratory results is
the focus of this report, with the hope that this can help healthcare professionals make
clinical decisions. Several obstacles, however, stand in the way of the efficient discovery
of patterns in medical data. The first is the dimensionality of the data. There are
hundreds of potential biochemical markers in medical records which can make training
models highly computationally intensive. The high dimensionality causes a second issue,
which is data sparsity. Most patients will only have a select few laboratory tests making
it impossible to compare them to patients who have had different tests. Finally, the
sparse, high-dimensional data is more likely to be impacted by outliers causing unreliable
results.

This report aims to identify dimensionality reduction algorithms best suited to similarity
retrieval and visualisation of medical data. That is, algorithms that can create meaning-
ful, low dimensional representations of high dimensional data. These low-dimensional
representations of the data will subsequently be analysed using unsupervised cluster-
ing algorithms and incorporated into a system that can identify patients deemed most
similar to a given patient.

The aforementioned research will be integrated into an interactive web-based applica-
tion, creating an interface to the patient case base that facilitates retrieving information
relevant to a current patient’s treatment using patient similarity retrieval.

1.3 Report structure

The report is organised as follows. Chapter 2 provides the background material rele-
vant to the motivation and technical aspects of the project, including data-mining and
unsupervised learning concepts. The project requirements are outlined in Chapter 3,
along with the proposed system architecture and design. Chapter 4 presents key imple-
mentation decisions relating to the web application and the algorithms used to perform
dimensionality reduction, clustering and similarity retrieval. The benefits and draw-
backs of various algorithms are analysed in Chapter 5 through a series of experiments
to compare performance when applied to a medical dataset. The chapter also evaluates
the web application’s performance through a series of tests and metrics. Chapter 6
provides an analysis of the implemented system and a critical evaluation of the work
performed, revisiting the system requirements. Closing remarks and potential further
work are outlined in Chapter 7. Finally, a user guide is presented in Chapter 8, detailing
the system setup process and describing the user interaction process with the graphical
user interface.

12



Chapter 2

Background

This chapter provides an overview of the concepts surrounding patient similarity re-
trieval, such as medical data (subsection 2.1.1), case-based reasoning and clinical de-
cision support systems (subsection 2.1.2), and the application of clustering to clinical
data (subsection 2.1.3). In addition, the technical concepts relating to the implementa-
tion of a similarity retrieval system and the visualisation of medical data are presented
in section 2.2. These include data mining (subsection 2.2.1), dimensionality reduction
(subsection 2.2.5) and clustering (subsection 2.2.6).

2.1 Data-oriented clinical decision methods

Data plays an essential role when making decisions in a clinical setting or performing
a medical diagnosis. Utilising a patient’s medical history, demographic knowledge, and
records of past patients can accelerate and improve decision-making, resulting in better
treatment plans and more timely administration of medical care.

2.1.1 Medical data and electronic health records

The adoption of electronic health records and electronic medical records—terms often
used interchangeably—has led to an increase in the availability and quantity of medical
data in an electronic format. In addition, large datasets have been obtained as the result
of studies and research into specific diseases or illnesses.

The increasing amount of data being recorded in an electronic format, be it in electronic
health records or standalone datasets, contributes to an increasingly large knowledge
base. The information being recorded is extensive and includes several different cate-
gories. Records often include meta-data relating to how, when and why the information
was catalogued, patient demographics such as age and gender, and information directly
relating to diagnosis and treatment: symptoms, test results, therapies and outcomes
being representative examples [4, 5].
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This data can then be used in research, the development of automated systems and even
directly by clinicians. Diagnoses and the preparation of treatment plans will often be
partially based on previously obtained information. Details such as which treatment
or dosing of a drug performed best for a given patient demographic can be invaluable
information, helping experienced clinicians and, more notably, junior clinicians who do
not yet have a vast number of past cases or experiences to base themselves on.

2.1.2 Case-based reasoning and CDSSs

Solved
Case

Retrieved
Similar
Cases

Current
Case

Learned
Case

Tested/
Repaired
Case

Case i

R
E
U
S
E

RE
TR

IEVE

RETA
IN

R
E
V
ISE

Case Base

General Knowledge

Problem

Figure 2.1: Case-based reasoning cy-
cle [23]. Diagram illustrating the four stages
of case-based reasoning: retrieve, reuse, revise
and retain.

The concept of diagnosing and treating a
new patient based on past patient data
can be likened to case-based reasoning
(CBR). Indeed, CBR is a process by which
a problem is solved based on solutions to
similar problems encountered in the past.
This concept has been described as the
combination of four processes [24]: re-
trieve, reuse, revise and retain.

The first stage, “retrieve”, identifies sev-
eral cases similar to the current query or
the current patient in the case of medical
data. These cases and associated infor-
mation are retrieved from the knowledge
base. The second step, “reuse”, applies
the solutions from previous problems to
the current one. This can mean adapting
or combining several solutions or treat-
ment plans to solve the current problem
appropriately. The “revise” stage of CBR
analyses the solution identified in the pre-
vious step to determine if the adaptations
were beneficial or detrimental. Identifying which adaptations or combinations are more
reliable or likely to result in a successful outcome can improve the case-based reasoning
process. Finally, the “retain” portion of the cycle adds the current case and solution to
the case base if it is deemed likely to be beneficial in the future.

As demonstrated in Figure 2.1, the case-based reasoning cycle is supported at all stages
by previously obtained knowledge. This knowledge can include: how to retrieve the most
relevant information, how to analyse it and extract valuable components appropriately,
and how to adapt a solution and determine which parts of it are likely to be helpful in
the future.
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Clinical decision support systems

Clinical decision support systems are software-based systems that can perform various
tasks, primarily oriented around assisting healthcare professionals in making decisions.
These systems can be implemented in various ways, relying on user-defined rules or
machine learning models. For example, some systems implement parts of the case-
based reasoning cycle, relying on EHRs as a knowledge base. Examples of the tasks
performed by CDSSs include automated treatment recommendations, the dispatch of
alerts and warnings to clinicians [7, 8], drug dosing suggestions [10, 11] and determining
the likelihoods of infection [9] or death [12]. In addition, while few systems implement
the complete CBR cycle, there are many examples of systems that perform the “reuse”
stage, producing recommended treatments or outputting numbers such as probabilities
corresponding to specific outcomes. However, lack of clarity on the methods utilised to
obtain these results or the inner workings of models learned through machine-learning
techniques, along with other concerns, has impacted the adoption rate of CDSSs [16,
18, 19, 20].

Thus, this project focuses on the “retrieval” stage of case-based reasoning, identifying
past cases most similar to a present case. In doing so, the project aims to produce a
system that facilitates and improves the information retrieval process, creating useful
visualisations and statistics whilst mitigating the aforementioned concerns and allowing
clinicians to form their own judgements and treatment plans based on the retrieved
information. In addition, a better understanding of the data can also be obtained by
applying clustering techniques to identify patterns or subpopulations in the data.

2.1.3 Clustering medical data

Clustering has been applied to medical datasets in an attempt to solve various issues or
identify trends and patterns in the data. This has been done with varying degrees of
success, with some methods failing altogether. However, several studies have successfully
shown that unsupervised learning methods, and more specifically clustering, can be
applied to medical data to identify patterns or groups in a set of patients.

Identifying disease sub-types

One of the most common applications of clustering on medical data is the use of elec-
tronic health records or raw laboratory results to identify subgroups in patients who
all have the same disease or condition. Clusters have been identified in patients with
hypertension and diabetes [25], patients with IgG4-Related Disease [26] and patients
who underwent joint arthroplasty [27] amongst others. These studies have shown that a
wide variety of clustering algorithms are available, and which one is most appropriate is
highly dependent on the data being used. K-means is widely used due to its simplicity
but more versatile algorithms like DBSCAN are sometimes necessary when searching
for more complex clusters (subsection 2.2.6). These studies also reveal that additional
steps are often needed before clustering to obtain meaningful results. Preprocessing
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(subsection 2.2.4) is a ubiquitous stage in data mining, with some methods leading to
better performance, regardless of which clustering algorithm is used [28]. Dimensional-
ity reduction methods are also commonplace for various reasons. They have been used
to make the clustering phase more effective by reducing the number of features present
in the dataset [26, 29]. They have also been used due to their ability to make data easier
to visualise. Reducing the dimension of a dataset through techniques like self-organising
maps can make visualising high-dimensional data in a low dimensional space possible.
This makes identifying patterns visually substantially easier [25].

Outlier detection

Clustering has also been applied to health records and other types of medical data to
identify outliers. This can be used to detect errors or implausible values in EHRs [30].
Results showed that an unsupervised learning approach can yield better performance
than a conventional rule-based system. Another study showed that outlier detection
could potentially be used to identify acute coronary syndrome patients who were at
higher risk [31], further demonstrating the potential strengths of unsupervised learning.

Applying clustering to more general problems

Whilst most of the clustering on medical data has been focused on specific diseases
or conditions, there have been attempts to use less specialised datasets. One study
clustered patients using electronic health records without filtering for a specific disease,
the aim being to help healthcare professionals diagnose and treat patients who were
categorised together and, therefore, likely to have similar conditions [32]. There have
also been attempts to use laboratory data such as biomarkers to cluster patients [28].
Whilst these tests were more effective when looking at patients affected by a same
condition (diabetes), there are indications that valuable information can be gained from
this type of clustering.

Unsuccessful applications of clustering

Whilst clustering has been applied to medical data with impressive results; there are
cases where this has been unsuccessful. One study attempted to use clustering meth-
ods to detect critical acute coronary syndrome patients [31]. No clusters were formed,
showing that not all data and tasks are suited to unsupervised learning applications and
demonstrating why supervised learning is the method of choice when the data allows it.

The choice of which clustering, preprocessing, and dimensionality reduction algorithms
are used are all essential to obtain reliable results. Furthermore, failing to account for
noise or how an algorithm will affect the data can severely impact results [33].
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2.2 Background theory

This section introduces the fundamental technical notions relevant to the implementa-
tion and analysis presented in this report. These include data mining, dimensionality
reduction and clustering concepts.

2.2.1 Knowledge discovery from data

Knowledge discovery from data (KDD), often called data mining, is a process used
to discover interesting patterns in data and make sense of that data [34]. A better
understanding of data can reveal knowledge about the domain it describes and allow
for novel solutions to existing questions and problems. Data Mining: concepts and
techniques summarises the knowledge discovery process into 7 stages as follows [35]:

1. Data cleaning

2. Data integration

3. Data selection

4. Data transformation

5. Data mining

6. Pattern evaluation

7. Knowledge representation

Data cleaning, integration, selection and transformation are all forms of data preprocess-
ing (subsection 2.2.4). The data mining step refers to the usage of intelligent methods,
such as unsupervised learning, to extract patterns from the dataset (subsection 2.2.2).
Pattern evaluation is the act of extracting patterns which are deemed “interesting”, that
is, patterns which can be easily understood, reliably applied to new data, and have a po-
tential use case. Knowledge representation deals with the visualisation of the extracted
patterns and data in a way which is easy to analyse and make use of.

2.2.2 Unsupervised learning

Unsupervised learning (UL) is a machine learning method that aims to uncover sig-
nificant patterns in data and understand underlying structures in datasets [36, 37]. It
does not rely on pre-existing labels or human supervision and is, therefore, often called
self-organisation or “learning without a teacher” [38, 39]. There are many approaches
to unsupervised learning, with the most common including clustering, neural networks,
and anomaly detection.

In unsupervised learning applications, the input data dimension is often higher than
what would be seen in supervised learning, and the properties being extracted more
complex. Therefore, many UL methods focus on identifying relations between variables
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and finding models that can represent the data instead of predicting an output variable
based on a set of input variables.

2.2.3 Supervised learning

Supervised learning (SL), like unsupervised learning, is a method that aims to uncover
underlying structure in an input dataset. However, unlike unsupervised learning, it does
so to learn a function that maps input data to one or more outputs. This function is
learnt during training by observing example input-output pairs. Given a set of data
with N observations, {(x1, y1), (x2, y2), ..., (xN , yN )}, where xi is an input and yi is its
associated output as generated by an unknown function y = f(x), a supervised learning
algorithm aims to uncover a function h which best approximates f . The performance
of such a model is evaluated based upon its ability to generalise and perform well when
presented with previously unseen data. [40]

2.2.4 Preprocessing

Preprocessing is a vital step in the KDD process because many data mining algorithms
have difficulty handling large scale, high-dimensional and sparse datasets, all of which
are common in medical data [41, 42, 43]. Data preparation addresses the aforementioned
issues, as well as biases in data and incomplete or inconsistent data [44, 45]. There are
four commonly used stages when preparing a dataset for data mining: (i) data cleaning,
(ii) feature scaling, (iii) feature engineering, and (iv) imbalanced data handling [45].
These steps, similar to the first four stages of the KDD process presented in subsec-
tion 2.2.1, are described below.

Data cleaning

Data cleaning or cleansing is the process of discovering and modifying erroneous entries
in a dataset. Modifying could mean, inputting new data, correcting existing data or
removing tuples altogether. Tuples with missing attribute values can either be removed
from the dataset or have the missing attribute values inputted based on an estimated
value. If data imputation is used, the dataset needs to be analysed to determine what
proportion of the data is missing and if missing entries are linked to another attribute.
This analysis influences which imputation method is used, with the attribute’s mean or
median being common choices [41, 45]. Inconsistencies in data such as varying formats
in dates or codes need to be corrected [46]. Finally, noisy data which may be caused
by both errors and outliers needs to be handled. This can be done by removing entries
which fall outside a normal expected range.

The inter-quartile range rule is an example of such a method. It uses the first and third
quartiles, Q1 and Q3, of the data to identify outliers. First, the inter-quartile range
itself is calculated as IQR = Q3 − Q1. Then, this value is multiplied by a constant—
typically 1.5—and added to the third quartile and subtracted from the first quartile.
This produces the interval [Q1− 1.5 · IQR,Q3 + 1.5 · IQR], which identifies which data
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points should be preserved. Values falling outside that range are considered outliers and
removed.

Feature scaling

Many unsupervised learning algorithms rely on a measure of distance between points,
such as Euclidean distance, when training a model. It is therefore important for different
dimensions or attributes to be normalised to the same or a similar degree. If one attribute
were to have a much larger range of values than all others, it would dictate the outcome of
the distance calculations, which in turn would disproportionately influence the model’s
training.

Two of the most used scaling techniques are Min-Max and Z-Score normalisation. Min-
Max normalisation rescales all features between two values, most commonly 0 and 1.
Z-score normalisation rescales features such that they are normally distributed, that is,
µ = 0 and σ = 1, where µ denotes the mean and σ the standard deviation [45].

Feature engineering

Feature engineering either selects exiting attributes or creates new attributes which
allow machine learning algorithms to operate more efficiently and provide better re-
sults [47]. Feature extraction transforms high-dimensional datasets into datasets of
lower dimension which conserve some meaningful characteristics of the original data.
This transformation, also called dimensionality reduction, is covered in subsection 2.2.5.
Feature selection selects a subset of the attributes in the dataset. It is not uncommon
for attributes in high-dimensional datasets to be highly correlated, potentially making
them redundant. Removing unneeded features can improve training time and the qual-
ity of the final model. Identifying and selecting only attributes which are truly relevant
to the current task can further improve performance.

Imbalanced data handling

Imbalances in datasets can be challenging as the algorithm may favour the more preva-
lent values or classes during training, leading to a biased model [47]. There are several
methods which can be used to sample the dataset, in such way that any imbalances
will be mitigated. These include oversampling and undersampling [45]. There are sev-
eral oversampling techniques with random oversampling being one of the most common.
Dataset tuples belonging to minority classes are replicated several times in the training
data which alleviates the imbalance [48]. Random undersampling works similarly, by
removing tuples belonging to the majority class.

2.2.5 Dimensionality reduction

Using high-dimensional data in machine learning applications results in more noise and
increases the likelihood of there being redundant or unrelated features in the data [49].
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Furthermore, the complexity of the training in ML algorithms is often linked the input
dimension of the data, as well as the number of tuples in the input dataset [50]. Reducing
the dimensionality of the data can therefore provide more efficient training and better-
quality results by reducing noise and removing unnecessary features from the dataset.
Indeed, simpler models are less impacted by noise and make it easier to identify which
features influence the data the most [51].

Feature selection aims to identify which attributes contain the most information and
uses those to train the model, whereas feature engineering creates a set of features
which are combinations of the original attributes. Principal component analysis (PCA)
and its variations are amongst the most commonly used methods, with others including
t-distributed stochastic neighbour embedding (t-SNE) and self-organising maps (SOM).

Reducing the dimensionality of the dataset also allows for visual representations of the
data. This can aid in analysis and make the KDD process more effective.

Principal component analysis

Feature 1

Fe
at
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e

2

Figure 2.2: PCA vs. LDA. Illus-
trative example of the differences be-
tween PCA and LDA when applied to
a two-dimensional dataset. The distri-
butions of data projected onto the first
principal component (PC1) and first
linear discriminant (LD1) are shown.

Principal component analysis is an exploratory
data analysis method typically used for dimension-
ality reduction, feature extraction and data visual-
isation. PCA aims to lessen information loss when
reducing dimensionality by maximising the vari-
ance of the data in the projected space. The tech-
nique creates new dimensions called principal com-
ponents (PCs) that are linear combinations of the
original features [52].

Each principal component is selected to fit the data
best and be orthogonal to the previously selected
principal components. Principal components are
obtained by computing the covariance matrix of
the dataset, ensuring each feature has zero mean,
and then calculating the eigenvalues and eigenvec-
tors of this matrix. Each normalised eigenvector is
then a principal component of the original dataset.
To reduce the data dimension from Rp to Rq with
q < p, the first q principal components, sorted in
descending order by their respective eigenvalues,
must be selected. The data can then be projected onto the selected PCs. The number
of principal components used is dependent on both the data and the application. It can
be selected by determining what fraction of the total variance is accounted for by each
principal component.
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Linear discriminant analysis

Linear discriminant analysis is a method typically used for classification and dimen-
sionality reduction tasks. Similarly to PCA, LDA aims to find a linear combination of
the input features, explaining the data and reducing its dimensionality. Whilst PCA
achieves this by finding axes that maximise the variance of the data, LDA maximises
the separability of classes in the dataset. Linear discriminant analysis requires prior
knowledge of each datapoint’s class, making it a supervised learning technique. The
differing objectives of PCA and LDA when applied to the same dataset are illustrated
in Figure 2.2

t-distributed stochastic neighbour embedding

t-SNE is a dimensionality reduction algorithm typically used as a way of visualising
high-dimensional data. Pairs of points in the high-dimensional space are assigned prob-
abilities, creating a probability distribution where a higher probability indicates simi-
larity between the objects. This step is repeated in the low dimensional space. The
Kullback–Leibler divergence which measures how probability distributions differ from
each other is then minimised. For datasets with very high dimensionality, this method
should be avoided due to the algorithm’s time and memory complexities. [53]

Self-organising maps

SOMs are a type of unsupervised learning neural network which produce a low-
dimensional representation of a high-dimensional input dataset [54]. SOMs use
competitive learning with Euclidean distance as metric to determine which datapoint
should influence the network neurons. The representation of neurons it produces, called
a map, makes it an ideal tool for visualising high-dimensional data in a low dimensional
space and for identifying relationships in the data [55].

Self-organising maps are trained iteratively, as demonstrated in Algorithm 1. At each
iteration, an observation is selected at random from the dataset, and a distance metric is
used to determine which map neuron is most similar to the selected sample. The winning
node coined the best matching unit (BMU) is then updated, along with its neighbouring
nodes, to become more similar to the sampled input. The learning rate, which decreases
at every iteration, is used as a weight for the update. The neighbourhood function
is a further adjustment, with neurons closest to the BMU receiving a more significant
update.
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Algorithm 1: SOM algorithm
Input: D, λ
initialise weights Wv for all nodes
s← 0
while s < λ do

randomly select D(t)
u← 0
min← inf
foreach Wv ∈W do

dist← d(D(t),Wv(s))
if dist < min then

u← v
min← dist

end
end
foreach Wv ∈W do

Wv(s+ 1)←Wv(s) + θ(u, v, s) · α(s) · (D(t)−Wv(s))
end
s← s+ 1

end

s is the current iteration
λ is the iteration limit
D is the input dataset
t is the index of a data vector in D
v is the index of a node on the map

Wv is the weight vector of node v
u is the best matching unit (BMU)
d is the euclidean distance function
θ is the neighbourhood function
α is the learning coefficient
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Autoencoders

Autoencoders (AEs) are a type of neural network which aim to learn an encoding of the
input data [56]. They do so by attempting to copy their input to their output, having
gone through a hidden layer h which has fewer neurons than the input has features.
This hidden layer h, often called a bottleneck, forces the model to extract the essential
features present in the input data to then be able to reconstruct the input as faithfully
as possible. Basic autoencoders are composed of two main elements, an encoder and
a decoder, as seen in Figure 2.3. The encoder is used to map the input data to a
code or encoding, often called the latent representation. The decoder uses this code
to produce a reconstruction of the input. This structure makes autoencoders ideal for
dimensionality reduction, as the latent representation will contain the input data’s most
important features. An autoencoder with two neurons in its bottleneck can then be
used to visualise data in two dimensions.

The learning objective for autoencoders is the minimisation of a loss function L(x, x̂)
which computes the dissimilarity of the input and its reconstruction. An example of
a loss function is mean squared error (MSE), as seen in Algorithm 2. The model is
then updated using backpropagation which computes the gradient of the loss term with
respect to the network’s weights and biases. Many autoencoder variants exist with
various applications, including de-noising, compression and generative modelling [57].

Latent
Space

Input Reconstructed
Input

Encoded data

Encoder Decoder

Figure 2.3: Autoencoder neural network. Example of an autoencoder’s structure, com-
posed of an encoder, a decoder, and an intermediary latent space which produces the dimen-
sionally reduced data.
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Algorithm 2: Autoencoder algorithm
Input: epochs, X
initialise θe

initialise θd

while e < epochs do
shuffle(X)
foreach xi ∈ X do

zi ← enc(xi,θe)
x̂i ← dec(zi,θd)
loss ← 1

n

∑n
j=1(xij − x̂ij)2

θe,θd ← backpropagation(loss,θe,θd)
end
e← e+ 1

end

e is the current epoch
epochs is the total number of epochs
X is the input dataset
enc is the encoder
dec is the decoder
θe are the encoder parameters

θd are the decoder parameters
n is the input dimension
p is the latent dimension
xi ∈ Rn is an input vector
zi ∈ Rp is an encoded vector
x̂i ∈ Rn is the reconstructed input

2.2.6 Clustering

Clustering is an unsupervised learning technique used to group data into a number of
categories or clusters [58]. Being an UL task, no labels are available [59] and objects
within a cluster must therefore be grouped based on some measure of similarity [60].
Although difficult to define, a cluster can be seen as a group of objects which are similar
to one another and dissimilar to objects in other clusters [61].

Cluster analysis is used to determine if a dataset can be summarised by a small number
of groups of objects. If the clusters created during training are different enough from
one another, they can be used to infer properties of a specific object based on which
cluster it belongs to [59].

k-Means

This algorithm uses a measure of distance between points to cluster them. Each point
is assigned to the cluster with the closest mean or centroid. Centroids are then updated
to be the mean of all points in the cluster. These steps are repeated until the centroids
stabilise [62]. While K-means scales well to a large number of samples, it has two well
known limitations: the number of clusters needs to be provided and it performs poorly
on clusters with irregular shapes. The results obtained by k-means when applied to two
different datasets are shown in Figure 2.4.
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DBSCAN

Density-based spatial clustering of applications with noise (DBSCAN) is an algorithm
which identifies clusters as areas where the density of points is high, and different clusters
are separated by low density areas [63]. This approach means that it can identify clusters
of any shape making it more flexible than k-means and mean shift (Figure 2.4). The
algorithm can be applied to large datasets, but either has a high runtime complexity or
high memory usage depending on the chosen implementation.

Gaussian mixture models

A mixture model is a probabilistic model which represents subpopulations or groups
within an overall population. Gaussian mixture models (GMM) are a sub-class of mix-
ture models which aim to identify several normal distributions, which each model a group
within a dataset. The combination of these normal distributions gives the probability
distribution of the overall dataset.

k-Means DBSCAN GMM

Figure 2.4: Comparison of clustering algorithms. Comparative performance of k-Means,
DBSCAN and GMM when applied to two different datasets. Only DBSCAN correctly identifies
two clusters distinguishing the crescents (row 1). Three groups of points were used to create
the dataset in row 2. These are correctly identified by GMM, whereas DBSCAN identifies only
two significant clusters and a number of outliers (grey). k-means detects one cluster correctly
(orange) but fails to correctly identify the boundary between the remaining two clusters.
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Each point in the dataset can then be assigned to one of these distributions, forming
clusters of points (Figure 2.4). Similarly to k-means, this algorithm requires the number
of clusters, or, more specifically, the number of mixture components to be specified. The
number of components selected can have a considerable impact on the performance and
significance of the obtained results.
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Chapter 3

System architecture and design

This chapter describes the implemented visualisation and similarity retrieval system’s
architecture and functionality. Firstly, the chapter presents the essential system require-
ments (section 3.1). Then, it describes the system design, both in terms of the process
which prepares a medical dataset for visualisation and patient similarity retrieval (sub-
section 3.2.1), and the overall system’s architecture, showing the roles and interactions
of different components (subsection 3.2.2).

3.1 System requirements

Three principal requirements must be met by a system attempting to use large scale
medical datasets. The first is visualisation; that is, the system must present data in an
easily interpretable manner. The second is patient similarity retrieval. The system must
be able to retrieve existing database entries that are most similar to a new, previously
unseen entry. Finally, the third requirement is the ability to interact with the case base—
or data currently in the database—for use in case-based reasoning or other applications.

3.1.1 Data visualisation

The availability of electronic health records and large scale medical data has increased
over time, with more and more information being recorded. However, whilst more data
has become available in electronic formats, it remains challenging to use it. Medical
datasets can contain dozens or hundreds of features, making interpreting that data
and identifying trends difficult. Figure 3.1 shows what a typical dataset tuple may
look like. It includes meta-data components or auxiliary information, features that, for
example, may correspond to laboratory test results, and labels that can be used to record
symptoms or outcomes. Furthermore, a large number of features—or dimensionality
of the data—can make it hard to compare laboratory results or clinical observations
between patients. The dimension of the data means that it must be looked at in a
tabular format or that only a select few features must be considered and visualised at a
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Figure 3.1: Example dataset tuple. It shows the typical structure of each observation in a
medical dataset.

time, making it harder to identify similarities or differences between patients as a whole.
Therefore, being able to visualise high-dimensional data in a low dimensional space is
an essential tool for improving one’s understanding of a dataset.

Dimensionality reduction algorithms (subsection 2.2.5) can be used to achieve this goal.
A suitable algorithm needs to transform the data to a lower-dimensional space whilst
retaining as much meaningful information as possible from the original dataset. Fur-
thermore, seeing as visualisation is a primary objective, one, two or three dimensions are
optimal. This allows all data points to be represented onto a single, easily interpretable
plot. Two-dimensional visualisations offer a balance of ease of use and understanding,
and information retention compared to one or three dimensions. Additional information
can be integrated into visualisations by making them animated or interactive. Doing so
can make it possible to visualise evolution over time, evaluating trends in the recovery
of patients, for example.

Whilst reducing the dimensionality of data does make visualising it possible, it also
means that some of the information has been lost. Therefore, retaining information
through other means must be considered and would be a requirement for many datasets,
otherwise losing a significant portion of their meaning. A potential solution is to accom-
pany visualisations by tabular data containing statistical summaries of the data being
represented.

3.1.2 Patient similarity retrieval

Another requirement towards better understanding and utilising medical datasets is
the ability to observe one patient and retrieve others who present similar clinical and
laboratory characteristics. This retrieval action corresponds to the first stage of the
case-based reasoning process (subsection 2.1.2).

Patiently similarity retrieval makes the next steps of case-based reasoning possible, no-
tably the re-use of past information such as diagnostics or treatments plans. Even when
these are not available, factors such as medical complications or symptoms shown by
a group of patients can be invaluable towards determining if a particular patient is at
higher risk or likely to develop comparable symptoms.
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3.1.3 Interaction with the case base

A final requirement that builds upon both data visualisation in low dimensional spaces
and patient similarity retrieval is the ability to interact with the case base. That is,
the creation of an interactive environment that can be used to visualise data points,
interact with them, retrieving the most similar ones, and then, where available, display
the related outcomes, symptoms or complications.

As well as considering existing cases, the ability to analyse and retrieve similar patients
to one who is not currently in the database is a requirement. This means that the
dimensionality reduction and retrieval algorithms must support unseen data.

3.2 System design

This section summarises the process used to prepare data for use in visualisation tasks
and similarity retrieval (subsection 3.2.1). It then presents an overview of the overall
system’s architecture (subsection 3.2.2).

3.2.1 Process outline

The process used to reduce data dimensionality for visualisation and to perform similar-
ity retrieval can be summarised into several distinct steps (Figure 3.2): feature selection,
preprocessing, dimensionality reduction, and clustering. The obtained representations
must then be evaluated to assess the quality of results and ensure they are meaningful.

Feature
selection

Pre-
processing

Dimensionality
reduction

Clustering Evaluation

Selection factors:
- Missing values
- Feature correlations
- Relevance to disease

- Feature consistency

Tasks:
- Missing value handling
- Outlier removal
- Data cleaning

- Feature scaling

Tasks:
- Apply DR algorithms
- Autoencoders
- SOMs
- t-SNE

- . . .

Tasks:
- Analyse reduced data
- Apply clustering algo.
- DBSCAN
- GMM

- k-means

Tasks:
- Analyse results
- Visual inspection
- Performance metrics

- Model selection

Figure 3.2: Process outline diagram. It summarises the five stages necessary to performing
clustering and preparing data for similarity retrieval.

Feature selection

The first step is data selection or determining which features in the dataset are most
relevant and likely to produce consistent and relevant results. Features are selected based
on their proportion of missing entries, their relevance to the disease being considered or
the problem being solved, and how consistent or reliable entries are. Laboratory results,
for example, the haematocrit, which is the volume percentage of red blood cells in the

29



System design

blood, do not contain the subjectivity that can arise from visual observations and are,
therefore, prioritised to train dimensionality reduction algorithms in this report.

Preprocessing

The next step is preprocessing, where further filtering and preparation is applied to the
data. Outliers can be removed using statistical rules, and inconsistencies in formatting
can be resolved. The data is scaled to match the input requirements of the dimensionality
reduction algorithms, and finally, the data types of some features can be changed where
required.

Dimensionality reduction

The processed data can then be used in dimensionality reduction algorithms where the
main aim is to represent the data in a format suitable for visualisation and interpretation.
Different algorithms, including linear methods such as PCA and non-linear methods
such as t-SNE, can be compared using evaluation metrics that indicate if a particular
algorithm performs better on a given dataset. Saving the best performing models means
that the reduced data they produce can be used with minimal overhead computation in
visualisation or potential case-based reasoning applications.

Clustering

The final stage of the process is analysing the arrangement of the data in the reduced
space and applying appropriate clustering algorithms. The aim is to determine if medical
complications or diagnoses can be inferred based on which cluster a patient belongs to.
Where appropriate, clusters can be detected automatically using methods such as k-
means or DBSCAN (subsection 2.2.6). Another possibility is to allow the user to define
a cluster by retrieving the patients deemed most similar to a selected patient. Doing so
provides more flexibility and potentially more accurate results than generic clustering
algorithms, which may perform differently depending on the dataset.

Evaluation

The results produced by the dimensionality reduction and clustering algorithms must
be evaluated to ensure that the low dimensional representations and clusters produced
are meaningful. Indeed, some algorithms such as t-SNE can produce low-dimensional
embeddings which seem to contain patterns or clusters even when provided noise as
input. Dimensionality reduction algorithms can be evaluated using a series of distance
and density metrics (section 5.1). Similarly, the clusters identified by algorithms such
as k-means and DBSCAN must be examined to determine if they uncover any sub-
groups within the population or information about how points are distributed in the
two-dimensional space.
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3.2.2 System architecture

The overall system architecture, presented in Figure 3.3, can be divided into three parts
that operate in conjunction to fulfil the main system requirements outlined previously.
The first is the algorithms and processing used for dimensionality reduction and re-
trieval of patients, the second is the front end, responsible for data visualisation and the
presentation of information, and the third is the back end used for data access.

Algorithms and processing

These algorithms are responsible for reducing the dimensionality of the information in
the datasets and retrieving database entries based on similarity measures. The dimen-
sionality reduction algorithms produce models stored in the database where the system
back end or other applications can retrieve them. Patient similarity retrieval is then
computed in real-time when a request is received from a front end user.

Front end

The user-facing interface, also known as the front end of the system or the client, is the
platform with which users can interact to utilise the models described previously. The
front end itself is composed of a graphical user interface (GUI) and a JavaScript layer.

The GUI is the interface that users interact with directly and is the point of access for
data visualisation and interaction with the case base. For example, it allows users to
select an existing patient and visualise the k most similar patients, where the number
k is user-defined. Alternatively, users can enter details for a new patient whose details
are not in the database and compare said patient to existing database entries. This is
equivalent to the “retrieve” stage of case-based reasoning.

The JavaScript layer is responsible for updating the elements visible in the user interface
and requesting information from the back end. Visualisations, for example, are generated
on the front end using data received from the back end. The JavaScript layer is also
responsible for form validation and preparing requests sent to the server using an API.

Back end

The back end, which can also be seen as the data access layer of the system, is re-
sponsible for retrieving data from the database and making it accessible to front end
users. It comprises a server-side web application programming interface (API) with
exposed endpoints that allow users to request resources, a server or processing compo-
nent that processes these requests, and a database. The requests received by the server
are executed, retrieving the required information from the database, applying further
processing where necessary and preparing a response to be sent to the front end user.
Responses are serialised into a JSON (JavaScript Object Notation) format, which data
can be recovered from on the client-side. The database stores both the trained dimen-
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sionality reduction models and the complete dataset, containing patient information,
laboratory results, and medical observations.

The back-end is also responsible for serving three types of static files. The first is
HTML (HyperText Markup Language), which describes the structure of the web page.
The second is CSS (Cascading Style Sheets), which specifies design rules, and the third
is JavaScript, which is responsible for interactive components and client-side processing.

Web Application ArchitectureDR
Algorithms

Front endBack end

Autoencoder

SOM

...

t-SNE

A
P
IDatabase

Train
model

Patient
data

Models

JSON

Fetch

HTML

JS

Logic and
processing

JavaScript
Layer

Figure 3.3: System architecture diagram. The implemented system interacts with trained
dimensionality reduction algorithms to produce two-dimensional data representations and per-
form similarity retrieval. These are stored in the database, which is part of the system back
end. The back end or server handles requests received from the front end application through
an API. Requests are processed on the server, results are then fetched from the database and
returned to the front end users through the same API endpoints which received the request.
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Implementation

This chapter presents the key components of the implementation of the patient similarity
retrieval and visualisation system. It outlines the implementation process and decisions
taken, firstly for the preparation of data (section 4.1), then for the unsupervised learning
algorithms (section 4.2), and finally, for the system back end (section 4.3) and front end
(section 4.4).

4.1 Data preparation

The data used in machine learning applications needs to be structured in such a way
that the algorithms can automatically interpret it. Typically, this means having data
in a tidy format where each column corresponds to a different feature and each row is
an additional data point. The number of columns is the dimensionality of the dataset,
whereas the number of rows gives the number of observations. Subsection 4.1.1 presents
the principal dataset used in this report. Subsection 4.1.2 details the cleaning and ad-
ditional preprocessing applied to the dataset to prepare it for the unsupervised learning
algorithms.

4.1.1 Dengue dataset

The primary data source used in this report is an aggregation of datasets collected by the
Oxford University Clinical Research Unit (OUCRU) over a series of studies conducted
within the Hospital for Tropical Diseases in Ho Chi Minh City, Vietnam [64]. Ten
datasets make up the aggregate, with the smallest dataset containing only 75 patients,
the largest having over 8000, and the total exceeding 16000 patients. The recorded data
spans over twenty years, with the first dataset containing entries recorded in 1999 and
the latest entries being reported in 2021.

The aggregated dataset comprises over 400 features, with only seventeen of them having
at least one observation in each dataset. The recorded features include administrative
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information such as the number of days since admission or illness onset, laboratory
results such as haematocrit1 and platelet count2, patient information such as age and
gender, and clinical observations or patient symptoms such as bleeding and shock.

4.1.2 Data preprocessing

The dataset uses a uniform feature naming convention, and feature values have consistent
notations due to preliminary cleaning performed by Imperial College London. The
dataset also uses a tidy format, making it appropriate for ML applications.

Further data handling, preprocessing and analysis was in large part done using Pan-
das [65], a data manipulation library for Python, Dataprep [66], an exploratory data
analysis library, and several purpose-built utility functions.

4.2 Machine learning models

At the core of the implemented system are the dimensionality reduction mappings or
models. They produce two-dimensional representations of the input data, making visu-
alisation possible. Clustering and similarity retrieval is then done in the reduced space
where results can be more easily interpreted and analysed.

4.2.1 Algorithms

Autoencoders

Autoencoders were implemented as a parametrised class using the PyTorch machine
learning framework for Python [67]. Creating a class facilitates the process of initial-
ising autoencoders with more or fewer layers, different layer sizes, and different latent
dimension size.

The encoder takes input numbers in the range between zero and one. The input passes
through a user-defined set of fully connected layers, which reduces the number of features
to the latent dimension size. The decoder then mirrors the structure of the encoder,
using fully connected layers to increase the number of features back to that of the
input. A ReLU or sigmoid activation function (Figure 5.15) follows each autoencoder
layer. These functions dictate the output of each node and introduce nonlinearity into
the network, allowing models to learn more complex functions. A sigmoid activation
function follows the final decoder layer, bounding the output into the same [0, 1] range
as the encoder input.

The vanilla autoencoder uses mean squared error (MSE) as a loss function, calculating
the distance between the input vector and the reconstructed output. The loss terms
computed on the training and test sets at each epoch are recorded for further analysis.
1Volume percentage of red blood cells in the blood. (%)
2Number of platelets within a designated volume of blood. (gigacount/L)
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These results can determine if the number of epochs should be increased or decreased,
which can impact the model’s performance and training time. The ability to create
animations showing the encoded data in the latent space at each epoch was also added.
Visualising the encoded data can be used to determine if early-stopping of the model’s
training could be beneficial and provides an insight into how the algorithm trains.

Scikit-learn

The Scikit-learn [68] machine learning library for Python is used on multiple occasions
due to its usage of Numpy [69] and Cython [70], which makes it highly efficient and pro-
vides a considerable performance improvement over standard Python implementations.
The analysis of some dimensionality reduction methods, including PCA and t-SNE, was
done using the Scikit-learn implementations. The library was also used for clustering
algorithms, including k-means and DBSCAN.

Self-organising maps

The Minisom [71] Python package was used for its Numpy based implementation of
self-organising maps. Several utility functions were also implemented to improve the
usability of the library, facilitating plotting and result visualisation. These include func-
tions used to plot the differences in values between nodes in the map and the distribution
of specific features.

4.2.2 Results analysis

Logs

A logging module was designed to generate logs of the results and parameters used during
the training and evaluation of various algorithms and configurations. The generated
logs consist of an HTML report, a JSON file used to store data in a machine-readable
format, and image files containing any generated plots and figures. The HTML report
combines all log elements into a human-readable format where results can be inspected
and analysed. Model hyperparameters can easily be saved in a table, along with results
produced during training. Saved figures are also inserted into the report. Finally, HTML
elements such as text, tables or interactive plots, like, for example, those generated by
the Plotly library [72], can be added to the report in a single line of code.

The logger is implemented as a standalone class used as a Python context manager or
declared like a traditional Python object. Using a context manager makes it possible for
the report to be generated even when the program terminates early with an exception.

Finally, the generated report and associated files can optionally be compressed.
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Evaluation techniques

Functions used to evaluate the various clustering and dimensionality reduction algo-
rithms are combined into a single Python module. Using a defined structure makes
it possible to use the same functions for all dimensionality reduction methods without
adapting them on an individual basis. Each function returns a dictionary that sum-
marises the results in a format that is both human and machine-readable. Where appli-
cable, a figure with plots showing visual representations of the results is also returned.
These can then be added to the logs and used to compare algorithms.

For tunable algorithms such as t-SNE, autoencoders and self-organising maps, different
parameter configurations were tested using a grid search. A grid search or parameter
sweep trains a model with all parameter configurations taken from a finite set of user-
defined hyperparameter values. For each configuration, a log file was created, making it
possible to determine which parameter configurations performed best.

4.3 Back end

The system backend, which serves data to the front end and interacts with the database,
is implemented in Python, an interpreted, dynamically typed language, which makes it
ideal for prototyping and rapid development. In addition, its extensive range of libraries
and object-oriented programming constructs promote code re-use. The database is re-
sponsible for storing the unprocessed data and trained models, whilst an API handles
client requests and prepares responses.

4.3.1 Data storage

The database is responsible for storing patient data which has had minimal processing
applied. Transformations to the data such as grouping and aggregation are applied at
training or query time with other preprocessing steps such as standardisation or outlier
removal.

The database also stores trained dimensionality reduction models, which can be accessed
when creating visualisation tools and encoding patient data.

4.3.2 Similarity retrieval and visualisation

The back end implementation is centred around an API that manages client requests,
allowing users to interact with the case base. The API handles requests for the data
used in front end visualisations, the retrieval of similar patients and any further inter-
actions with the database. The server itself is implemented using Flask3, an application
development framework for Python. It handles elements such as routing, receiving re-
quests and sending responses, serialising and deserialising JSON objects, and serving
static files.
3https://flask.palletsprojects.com/en/2.0.x/
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The server-side web-API implements four publicly exposed endpoints accessible via spe-
cific uniform resource identifiers (URIs) using HTTP requests (Figure 4.1). Responses
use JSON (JavaScript Object Notation) and are sent from the same URIs.

/get data

This endpoint is used to retrieve an array of two-dimensional coordinates, where each
point corresponds to one patient’s data. The coordinates are obtained by encoding pa-
tient information using a dimensionality reduction model. The current implementation
uses the model produced by an autoencoder due to the comparative advantages inves-
tigated in section 5.2. The client can use the index of each data point in the array to
identify a patient when retrieving further information.

/get k nearest

This endpoint is used for patient similarity retrieval, with each query requiring two
arguments. The first being a patient ID, which, as mentioned previously, is the index
of the corresponding data point in the data array. The second is a parameter k which
indicates that the k most similar patients should be retrieved.

To reduce computation time and, consequently, the APIs response time, brute force
kNN (k-Nearest Neighbours) must be avoided. Brute force implementations of kNN use
exhaustive search leading to poor time complexity. The algorithm requires iterating over
all n points k times, calculating a distance in p dimensions at each step, where p is the
dimension of the dataset. This nested loop structure yields a time complexity O(knp)
which is not scalable to large datasets.

K-d trees or k-dimensional trees are multidimensional binary-tree data structures that
can efficiently query data for various problems, including kNN [73]. Whilst the data
structure does require building time (O(pn logn)) and additional storage (O(pn)), it
reduces querying time considerably for larger datasets. The retrieval of a single nearest
neighbour can be done in O(logn) time, making the kNN time complexity O(k logn).

/get k nearest uses Sci-kit learns implementation of k-d trees [68]. The tree is built
when the server is started and is then stored in memory. For large datasets, the tree
could be built once and then saved to the database to reduce computational overhead
when starting the server. It could then be updated with insertions and deletions only
requiring O(logn) time. Retrieval time could be further optimised by taking advantage
of the fact that points which are close in the original dataset are close in the tree.
This spatial locality reduces the search space, reducing the potential time complexity to
O(
√
n+ k) [74].

The response returned by this endpoint contains the indices of the k points closest to
the one specified in the query. An HTML table that contains summary statistics for
both the k selected patients and the remainder of the dataset is also included in the
response.
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User Interface Server

i1

i2

i3

Set k value
Select patient on plot

GET /get data

GET /get k nearest

Set k value
Set patient age

Set patient weight

Set patient platelets

Set patient haematocrit

Set patient temperature
GET /get data

GET /enc patient

Set patient study no

GET /get data

GET /get trace

Asynchronous responses

Asynchronous responses

Asynchronous responses

Figure 4.1: Web-API client-server interactions. The web app implements three main
interactions with the server which make use of the API endpoints. i1, which retrieves the k-
nearest neighbours, given a user-selected point on a 2D plot of the dimensionally reduced dataset.
i2, which retrieves the k-nearest neighbours, given information relating to a new patient using a
form. i3, which retrieves and displays a patient’s ‘trace’ on a 2D plot. For illustrative purposes,
/get data is shown in each interaction; it is, however, only performed once at page load time.
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/enc patient

This endpoint is used to visualise the nearest neighbours of a patient who is not currently
in the database. Each query to this endpoint must contain the number of neighbours
to retrieve k and the patient information required to encode the datapoint, reducing its
dimensionality for visualisation and comparison to existing patients. The data required
to perform the encoding are the features that were used during training. In the case of
the dengue dataset (subection 5.2.1), those features are age, weight, body temperature,
platelets and haematocrit. The parameter k and the encoded data point are then used to
query the k-d tree and send a response, following the same process as /get k nearest.

/get trace

This endpoint takes a patient identifier as an optional query parameter. The identifier
must be a valid ‘study no’ in the dengue dataset used to identify each patient uniquely.
If one is not provided, an identifier will be selected at random and returned with the
response.

The response sent by this endpoint will contain the dates and coordinates in the two-
dimensional space of all observations in the dataset relating to the provided ‘study no’.
This is achieved by querying the database for entries matching the identifier. The
returned results are encoded using one of the trained models (subsection 4.2.1) and
formatted in JSON along with their respective dates.

4.4 Front end

The front end implements an interactive application from where users can visualise and
examine patient data. The framework interfaces with the server using the previously
described web-API (section 4.3). The visualisation tool consists of two single-page, full-
screen apps implemented in HTML (HyperText Markup Language), CSS (Cascading
Style Sheets) and JavaScript (JS).

Visualisation

Both applications are centred around an interactive 2D scatter plot implemented using
Plotly.js4, a JavaScript charting library that extends d3.js5. Points on the scatter plot
represent patients or observations in the dataset and originate from the dimensionality
reduction algorithms presented in subsection 4.2.1.

The plots support basic functionality such as panning and zooming, as well as exporting
as an image. Further interactive features such as nearest-neighbour retrieval use event
handlers to detect click events on the plot and determine which data point is selected.
4https://plotly.com/javascript/
5https://d3js.org/
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Tabular data

The similarity retrieval application also includes tabular data, which summarises the dif-
ferences and provides summary statistics about the data included in the current nearest
neighbour query and data excluded from the current query. This is done using an
HTML table created by the server and returned with each API call to /enc patient or
/get k nearest. The table is then automatically updated with the new data.

Interactivity

As stated previously, interactions with the Plotly.js chart are detected using event han-
dlers6. The index of the selected point is obtained, and a query can then be formed.
The k value used when retrieving the k most similar patients is input by the user using
a slider, whose value updates are detected using its oninput event handler. JavaScript’s
Fetch API7 is then used to interact with the application’s server-side web API. The
Fetch API prepares a Request object using the query URL and parameters, and then
retrieves the Response object created by the server. The Response object is used to
update the data displayed on the plots and other elements such as the HTML table. API
calls to the /enc patient endpoint follow a similar process, with the main difference
being how the query parameters are obtained. Patient information is entered using a
form, and a query is made when the submit button is pressed.

Structure and layout

The front end uses HTML for the page layouts, CSS for styling and JavaScript to
incorporate interactivity into the web app. These files are sent to the client when the
web page is loaded. Then, further resources and libraries are loaded by the users’ browser
using content delivery networks (CDNs) or requested from the server using JavaScript.
The layout is based on the Octopus theme8, originally authored by Colorlib9. The
theme uses the Bootstrap front end framework10, which contains CSS and JavaScript
templates for various layout and interactive elements. The layout followed by each page
is shown in Figure 4.2. In addition, Chapter 8 provides a user guide and an overview of
the elements on each page.

6https://developer.mozilla.org/en-US/docs/Web/Events/Event_handlers
7https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
8https://github.com/icdcom/octopus
9https://colorlib.com/
10https://getbootstrap.com/
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Navigation

Content Body

Header

Figure 4.2: Application layout. Each page of the application shares the same layout: a
collapsible navigation panel on the left side allows users to access different pages, a header
indicates the current page and the content body contains the material to be displayed on the
current page.
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Chapter 5

Testing and results

This chapter describes the process taken to evaluate the performance of various dimen-
sionality reduction algorithms and the system as a whole. It first presents the metrics
used to assess performance and compare algorithms (section 5.1). It then reports the
results achieved by various algorithms, aiming to ascertain which is best suited for visual-
isation and similarity retrieval applications (section 5.2). Experiments were undertaken
to evaluate the performance of t-SNE (subsection 5.2.2), self-organising maps (subsec-
tion 5.2.3) and autoencoders (subsection 5.2.4). Finally, this chapter outlines the test
plan used to evaluate the web app and the performance results obtained (section 5.3).

5.1 Metrics

This section presents the metrics which were used to compare the performance of dif-
ferent algorithms and parameter combinations.

5.1.1 Distance metrics

Dimensionality reduction methods extract the meaningful properties of a dataset and, in
the process, lose some of the information. Distance metrics can be used to determine how
well the distances between points are preserved. The stronger the relationship between
the distances in the reduced space and the distances in the high-dimensional space, the
less information has been lost. Computing the distances from each point to every other
point can be highly computationally intensive. Therefore, sampling points at random
from the dataset to be used in the evaluation is sometimes necessary. The dataset
used in the experiments (subsection 5.2.1), for example, has over 14 000 data points.
Consequently, using all points in the distance analysis would require 200 million distance
calculations in the original high-dimensional space and 200 million in the reduced space.

43



Metrics

Sheppard diagram

Figure 5.1: Sheppard diagram. It shows
an example of a Sheppard diagram. Original
distances are plotted against corresponding dis-
tances in the reduced space.

Sheppard diagrams are scatter plots of
two measurements of distances between
objects [75]. In dimensionality reduction
analysis, the first measurement or collec-
tion of distances corresponds to the points
in the original dimension. The second
measurement is the distances in the re-
duced space. Plotting one measurement
against the other can be used as a visual
indication of any distortion incurred when
reducing the dimensionality (Figure 5.1).
In other words, it shows how well dis-
tances have been preserved relative to one
another. Collinear points indicate that
there has been no distortion. The more
points do not lie on this line, the more
the distances have been distorted and in-
formation lost whilst reducing the dimen-
sionality.

Pearson correlation coefficient

The Pearson correlation coefficient is a statistical measure that gives the linear correla-
tion between two variables. The result is given in the [-1, 1] range where 0 indicates no
linear correlation [76]. A value of 1 indicates that every increase in one variable is ac-
companied by a rise of fixed proportion in the other. Conversely, a value of -1 indicates
that every increase in one variable is accompanied by a decrease of fixed proportion in
the other.

The Sheppard diagram serves as a visual guide that can be used to determine how well
the positioning of points have been preserved compared to one another. However, it
does not serve as a single metric that can be used to compare the performance of dif-
ferent algorithms. The Pearson correlation coefficient can analyse the linear correlation
between the original distances between points and the distances in the reduced space.
Values close to 1 indicate that the dimensionality reduction has not caused any signif-
icant loss of information and that close together points in the original dataset remain
close together in the reduced representation. Values close to 0 indicate that no relation-
ship between the points has been preserved, and a considerable amount of information
has been lost during dimensionality reduction.
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Spearman rank correlation coefficient

Spearman’s rank correlation coefficient measures the dependence between the rankings
of two variables [77]. Values of 1, -1 and 0 respectively indicate a monotonically in-
creasing relationship between the variables, a monotonically decreasing relationship and
no relationship (Figure 5.2). The measure is defined as being the Pearson correlation
coefficient applied to the rankings of the two variables.
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Figure 5.2: Spearman’s rank correlation coefficient. Three examples showing how the
coefficient value is impacted by the data.

There are applications where maintaining the ordering of distances is more important
than having a linear relationship between the distances in the original and reduced
spaces. Similarity retrieval, for example, will provide the same results in the original
space and the two-dimensional space if the Spearman rank correlation coefficient of the
distances in both spaces is one.

Procrustes analysis

Ordinary or classical Procrustes analysis is a statistical method typically used to com-
pare the shapes of two or more objects. The comparison is achieved by performing Pro-
crustes superimposition, which finds a set of translation, rotation and uniform scaling
operations which optimally superimposes the objects [78]. An optimal superimposition
minimises the Procrustes distance d between objects, typically defined as the square
root of the sum of the squared pointwise differences between two objects (equation 5.1).
x and y denote two groups of n points in p dimensions. When comparing points with
different dimensionality, the dataset with fewer dimensions should have columns of zeros
appended to match the dimension p.

d =

√√√√√ n∑
i=1


p∑

j=1
(xij − yij)2

 (5.1)

Procrustes analysis can be used to evaluate the performance of dimensionality reduction
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algorithms by applying Procrustes superimposition to the original dataset and the data
in the reduced space. The final Procrustes distance obtained after the optimal super-
imposition has been found can be used as a disparity measure between the two sets of
points. In this report, the squared disparity is used. A value of zero indicates that the
points can be perfectly superimposed and that no information has been lost during the
dimensionality reduction process.

5.1.2 Density metrics

Distance metrics alone are not sufficient when comparing different dimensionality reduc-
tion algorithms or models. Indeed, as dimensionality increases, the distance from a point
to its nearest neighbour nears the distance to the farthest data point [79]. This effect
was shown to arise in datasets with as few as ten dimensions [80]. As this happens, all
points in the dataset will be at a similar distance from one another, which poses issues
when using distances between points to assess performance. Similarity retrieval tech-
niques that rely on distance metrics such as Euclidean distance will also become flawed.
The assumption that similar points have similar labels or associated observations no
longer holds [81].

Therefore, where available, metrics which make use of labels associated with data points
should be used in conjunction with distance metrics when evaluating dimensionality
reduction algorithms. Three metrics that evaluate the density of points with a given
label compared to all points are used in this report to compare algorithms. Values
approaching zero indicate that all points with a given label are close together in the
reduced space. In contrast, values close to one indicate that points with a given label
cover an area in the reduced space similar to the area covered by all points.

Convex hull ratio

This metric is the ratio of the area of the minimum convex polygon, which encloses all
points with a given label, to the area of the minimum convex polygon, which encloses

GMM ratio Convex hull ratio Concave hull ratio

Figure 5.3: Density metrics. The three density metrics used in this report.
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all points in the dataset. As shown in Figure 5.3 (convex hull ratio), this ratio is
highly impacted by outliers, increasing the convex hull area considerably. Whilst this
susceptibility to outliers can make the metric less reliable, it does provide a value that
is less likely to change as more points are added to the dataset.

Concave hull ratio

Similar to the convex hull ratio, this metric computes the ratio of the area of a concave
polygon, which encloses all points with a given label, to the area of a concave polygon,
which encloses all points in the dataset (Figure 5.3). This metric, comparatively, is less
impacted by outliers giving a more reliable measure of performance.

GMM ratio

This final ratio uses Gaussian mixture models (subsection 2.2.6) with one component.
The metric takes the ratio of the area of the confidence ellipsoid of a model fitted to
data points with a given label to the area of the confidence ellipsoid of a model fitted to
all data points. This metric is the most robust to outliers as the areas of the ellipsoids
are not severely impacted by points that lie far away from the probability distribution’s
mean (Figure 5.3).

5.2 Experiments

Three experiments were performed to compare the ability of t-SNE, self-organising maps,
and autoencoders to produce meaningful visualisations and perform similarity retrieval
when applied to a preprocessed version of the dengue dataset.

5.2.1 Dataset

The following experiments all use the Dengue dataset (subsection 4.1.1). The dataset
was grouped by patient ID (‘study no’) and then aggregated to reduce the number of
data points and address the high proportion of missing values.

Each patient’s data was forward and backfilled to eliminate any potential issues caused
by missing values when aggregating the data. Patient entries were removed in cases
where forward and backfilling was impossible due to a patient having no existing values
for an attribute. Due to only a limited amount of data being available for patients over
the age of eighteen, the data used was limited to those under eighteen. The interquartile
range (IQR) rule was applied for features where outliers were an issue, removing entries
below Q1− 1.5 · IQR or above Q3 + 1.5 · IQR. The platelets feature, in particular, had
values several orders of magnitude above the normal reference range of 150−450×109/L
for adults and 150− 400× 109/L for children, making removing outliers a necessity.

Following outlier removal and missing value handling, the dataset was grouped by patient
ID (‘study no’) and aggregated, producing one entry per patient. The aggregation
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functions are outlined in Table 5.1 and were selected to extract the values which are
considered most extreme in the context of dengue fever. The haematocrit, for example,
is expected to increase when a patient has dengue and become higher as a patient’s
situation worsens [82]. The maximum haematocrit value is therefore taken for each
patient. Similarly, the platelet count is expected to decrease in patients with dengue,
and the minimum value is therefore selected. A total of 14484 records remained in the
dataset following these preprocessing steps.

A total of thirteen features were extracted from the dataset to be used in the experi-
ments. Their presence in nine of the ten datasets which make up the aggregate makes
these features ideal to mitigate the impact of missing values. Five continuous features
were selected to be used in training, whilst the remaining eight were selected to analyse
and describe the results of the various experiments. Patient age, body temperature,
haematocrit, platelets and weight were selected as training attributes. These features
are typically recorded on admission and at several points during a patient’s stay. The
remaining features presented in Table 5.1 were selected as they are amongst some of the
most common symptoms and complications of dengue fever.

Table 5.1: Experiment dataset features

Features Aggregation Values

Abdominal pain boolean max 4606 (31.8)
Age* continuous max 8.0 [5.0,11.0]
Ascites boolean max 2331 (16.1)
Bleeding boolean max 3724 (25.7)
Bleeding gum boolean max 1589 (11.0)
Bleeding mucosal boolean max 2666 (18.4)
Bleeding skin boolean max 6620 (45.7)
Body temperature continuous mean 37.6 [37.2,38.3]

Gender categorical first Female - 6327 (43.7)
Male - 8157 (56.3)

Haematocrit continuous max 40.3 [37.2,45.0]
Platelets† continuous min 169.0 [71.0,243.0]
Shock boolean max 701 (4.8)
Weight continuous mean 26.0 [19.0,37.0]

Values for continuous features are provided as: median [Q1, Q3]. For Boolean
features, the number and percentage of positive observations is given as n (%).
* Patients over the age of 18 were filtered out due to the low number of samples
in the dataset.
† IQR rule was applied to remove outliers.
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5.2.2 Experiment I: t-SNE

This experiment aims to determine if t-distributed stochastic neighbour embedding (t-
SNE) can be used for dimensionality reduction to aid in visualising the dataset and
retrieving data points that are deemed similar to one another. The data used in this
experiment is the dengue dataset grouped by ‘patient’ and aggregated to extract the
most extreme values for each feature (subsection 5.2.1).

Dimensionality reduction

Figure 5.4: t-SNE Sheppard diagram. Dis-
tances between points in the original space plot-
ted against the corresponding distances in the
low-dimensional space produced by t-SNE

As shown in the Sheppard diagram (Fig-
ure 5.4), distances between points in
the original data and points in the two-
dimensional data are not well preserved.
A Pearson correlation value of 0.769 (Ta-
ble 5.2) indicates a medium to a high de-
gree of correlation between the original
and reduced distances. However, it also
indicates that a significant proportion of
the distances may not have their ordering
preserved and is considerably lower than
the Pearson correlation obtained when us-
ing PCA (0.925). The diagram shows that
points that were very close together in the
input space remain close in the reduced
space, but that distances are less well pre-
served for further apart points in the orig-
inal space. Furthermore, the disparity obtained following a Procrustes analysis on the
original points and those in the two-dimensional space is considerably worse than the
disparity obtained for PCA.

These results are not surprising as t-SNE primarily uses local properties of the data when
reducing dimensionality [53]. While t-SNE does retain some of the global structure,
making it a helpful tool for further analysing the dataset, it has some limitations when
applied to the present use case: identifying and visualising patients similar to a given,
previously unseen, patient. Indeed, the algorithm learns a non-parametric mapping,
meaning that it does not produce an explicit function which maps the input space to
the output, lower-dimensional space [53]. Consequently, traditional t-SNE cannot embed
unseen points into the lower-dimensional space. This means that data corresponding to
new patients, not used in training, cannot be reduced and visualised in the 2D space. It
also prevents patient similarity retrieval from being applied to new data points. Nearest
neighbour retrieval can then only be applied to existing points in the embedding, limiting
its usefulness which is already impacted by the poor conservation of distances between
points. Running t-SNE again with both the new data point and the existing ones can
circumvent this issue but has its shortcomings. The t-SNE algorithm has a quadratic
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Table 5.2: t-SNE grid search results

Perplexity EE LR Pearson GMM ratio

5 5 100 0.533 0.941†

10 5 100 0.750 0.568†

20 5 400 0.769 0.456
40 5 400 0.780 0.442
100 40 200 0.777 0.435†

200 40 100 0.770 0.416†

EE = Early Exaggeration; LR = Learning Rate.
The results presented in this table are those of 6 config-
urations out of 144 trialled in the grid-search, which are
representative of how varying different parameters impacts
results.
† Configuration only resulted in one cluster.

time complexity O(n2), making it inefficient to re-run the algorithm for each new data
point. For comparison, parametric algorithms learn a function that can then map an
input to a point in a lower-dimensional space, which has a constant time complexity
O(1).

Furthermore, t-SNE has a non-convex objective function which is minimised using gradi-
ent descent. Random initialisation means that a local, as opposed to a global minimum,
may be found, making results vary between runs, even when using the same data and
hyperparameters. Re-training with new data points may further impact results, mean-
ing the produced model needs to be re-evaluated before being used in practice. For
t-SNE, which does not aim to preserve distances, visual inspection is usually needed as
distance metrics have little meaning, making the process difficult to automate.

Clustering

Whilst t-SNE has its limitations when applied to patient similarity retrieval, it can be
an informative tool for analysing the dataset. Finding clusters can be used to identify
disease subtypes or determine if a particular group of patients is at higher risk of a
specific disease outcome.

The t-SNE algorithm iteratively transforms points creating a representation of the data

Table 5.3: t-SNE grid search hyperparameters

Hyperparameter Values
Perplexity 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 100, 200
Early exaggeration 5, 12, 20, 40
Learning rate 100, 200, 400
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in a two-dimensional space. The results obtained are largely dependant on the hyper-
parameters used, which must be carefully selected. A grid search was performed to
analyse different configurations, varying the values for three parameters presented in
Table 5.3: perplexity, early exaggeration and learning rate. Perplexity adjusts the im-
portance of local versus global features of the data during training. Early exaggeration
increases the distance between natural clusters in the original space when the data is
reduced to the embedded space. Finally, the learning rate impacts the extent to which
points are updated at each algorithm iteration.

Of the 144 parameter configurations used in the grid search, only 15% showed more
than one relevant cluster identifiable using DBSCAN (subsection 2.2.6), with most con-
figurations resulting in only one large cluster. The search revealed that higher learning
rates performed better when applied to this dataset. Here, performance is measured
in terms of the number of clusters found and the density ratios obtained for the shock
label. Configurations with a learning rate of 400 resulted in maps with more than one
cluster more consistently. Lower learning rates may cause the objective function to get
stuck in a local minimum, explaining why higher learning rates consistently performed
better. Higher values of early exaggeration (20, 40) resulted in distinct clusters being
formed more often than for lower values (5, 12). The lack of distinct clusters for lower
values of early exaggeration suggests that clusters in the high-dimensional space—if they
exist—are close together. Perplexity values in the interval [25, 50] resulted in more than
one cluster for 30% of the parameter configurations. In contrast, perplexity values set
below that range resulted in one large cluster due to the global structure of the data
being lost. Values above that range resulted in smaller, denser clusters, explained by
the increased importance of global topology over local features (Figure 5.5). These val-
ues coincide with the original t-SNE paper, suggesting that typical perplexity values lie
between 5 and 50 [53]. Furthermore, larger datasets often require a higher perplexity
explaining why values over 25 worked best in this case [83].
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Figure 5.5: Effect of perplexity on t-SNE. This shows how different perplexity values
impact the projection of points in the embedded space. Points corresponding to patients with
the ‘shock’ label are also shown.
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DBSCAN was used to identify clusters in the embedded space due to its ability to
detect clusters of different sizes and shapes. Alternatives such as k-means would be
negatively impacted by the proximity of clusters and their varying size. For instance,
k-means would identify clusters different from the visually identifiable ones, which is
problematic as t-SNE does not necessarily preserve the relative positioning of clusters
when reducing dimensionality. Figure 5.6 shows two clusters identified by DBSCAN
in the t-SNE reduced embedded space. There is no guarantee that points in Cluster 2
that lie close to Cluster 1 are more similar to points in that cluster than points that lie
further away.

While the embedded space produced by t-SNE should not be used for similarity retrieval,
the two clusters obtained reveal some information about the dataset. Indeed Figure 5.7
shows that the two clusters identified in Figure 5.6 present considerable differences. Both
attributes used in training (Age, Body temperature, Haematocrit, Platelets, Weight) and
observations not included in the dimensionality reduction process such as ‘Abdominal
pain’, ‘Bleeding’ and ‘Shock’ present significant differences. Indeed, Cluster 1 displays a
higher occurrence of all the observations, except for ‘bleeding gums’. Cluster 1 also shows
a platelet count considerably lower than that of Cluster 2 and a higher haematocrit. This
suggests that patients with low platelets and high haematocrit are more likely to show
these symptoms.

It must be noted that while Cluster 1 contains a comparatively high proportion of
patients with shock (approximately 18%), it only contains about 50% of the dataset’s
shock patients, with the remainder being in Cluster 2. This is explained by the low
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Figure 5.6: t-SNE with DBSCAN clustering. The DBSCAN algorithm detects two clusters
and a small number of outliers.
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number of observations in Cluster 1 compared to Cluster 2.
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tions of feature values for each cluster identified in the t-SNE embedded space using DBSCAN.
The proportion of positive observations is given for binary features such as ‘Abdominal pain’.
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Insights and results

To summarise, while t-SNE is a powerful dimensionality reduction algorithm, it has
limited applicability when the main objective is to perform similarity retrieval on the
reduced data. The lack of definitive meaning in the positioning and densities of clus-
ters makes it harder to interpret the data and use distance metrics to identify similar
patients. Furthermore, its iterative training learns a non-parametric mapping that can-
not map new points to the embedded space. Finally, the quadratic computational time
complexity of re-running the algorithm for each new data point further reduces the
algorithm’s ability to be used in an interactive similarity retrieval and visualisation ap-
plication. However, the results produced using t-SNE provide some insight into the
dataset and can be used for exploratory data analysis.
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5.2.3 Experiment II: SOM

This experiment aims to determine if dimensionality reduction using self-organising
maps (SOMs) can help visualise the dataset and retrieve patients who are deemed most
similar to one another. The dataset used in this experiment is the dengue dataset
grouped by patient and aggregated to select the most extreme values for each fea-
ture (subsection 5.2.1).

Dimensionality reduction

Figure 5.8: SOM Sheppard diagram. Dis-
tances between points in the original space plot-
ted against the corresponding distances in the
low-dimensional space produced by SOMs.

Self-organising maps have multiple pa-
rameters that can influence the quality of
results, two of them being the total num-
ber of nodes or neurons and the map’s di-
mensions. Jing Tian et al. suggest using
M = 5 ·

√
N neurons, where N denotes

the number of observations and using the
ratio of the data’s two largest eigenvalues
as the ratio of the map dimensions [84].

Figure 5.9a shows how varying the num-
ber of neurons in the map can impact
the preservation of distances between the
high and low dimensional spaces. Smaller
maps are better at maintaining the rela-
tionship between distances in both spaces,
as shown by the decreasing Pearson corre-
lation coefficient as the number of nodes
increases. Similarly, the Procrustes dissimilarity measure increases with the number of
neurons, suggesting that translation, rotation and uniform scaling becomes less effective
at minimising the differences between points in the original data and the two-dimensional
space. The Sheppard diagram in Figure 5.8 further illustrates how the distances between
points and their ordering are affected by dimensionality reduction.

The ratio of the map dimensions was seen to have less impact on the preservation of
distances, with most ratios performing similarly for a fixed number of nodes. The poor
preservation of distances as the map size increases, can likely be explained by the discrete
number of points input observations can be mapped to using self-organising maps. Not
only are the distances between points poorly conserved, but the ordering of the distances
between points is also affected, as can be seen by the values obtained for Spearman’s
rank correlation coefficient (Table 5.5).

Varying the number of nodes in the map and the ratio between the length of the sides
also impacts how densely packed points with a specific label are. Indeed, Figure 5.9b
shows the impact of the ratio of the sides on the density of points with the ‘Shock’ label.
Dimensions that have a ratio that nears that of the ratio of the data’s two largest

55



Experiments

0 500 1000 1500 2000 2500
Number of nodes

0.45

0.50

0.55

0.60

0.65

0.70

M
et
ri
c
va
lu
e

Pearson correlation

Procrustes disparity

(a) Impact of the number of nodes in a square
map on distance metrics. The number of nodes
M = 5 ·

√
N suggested by Jing Tian et al. [84] is

shown in red.

2 4 6
Ratio of sides (X/Y )

0.35

0.40

0.45

0.50

M
et
ri
c
re
su
lt

GMM ratio

(b) Impact of the ratio of the sides of a SOM
with a fixed number of nodes on the GMM ratio.
The ratio of the dataset’s two largest eigenvalues
is shown in red.

Figure 5.9: The impact of SOM dimensions on performance metrics.

eigenvalues lead to observations with the shock label being more densely arranged.
Moreover, whilst distances are better preserved for maps with fewer than five hundred
nodes, points with the shock label appear closer together on slightly larger maps, with
maps with six hundred to one thousand neurons performing the best.

A grid search was performed to determine how other hyperparameters impact the two-
dimensional maps produced by the SOM algorithm. A total of 224 configurations were
evaluated using the parameters in Table 5.4. The three parameters all affect the extent
to which nodes are updated at each iteration. The learning rate acts as a weight that
decreases as training progresses. The neighbourhood function is used to weight updates
based on a point’s distance to the BMU (Best Matching Unit). Figure 5.10 shows two-
dimensional versions of the neighbourhood functions used. Finally, the sigma parameter
determines the reach of the neighbourhood functions, with higher values meaning more
nodes will be updated.

The results were analysed using the density of points with the shock label as the prin-
cipal performance metric. Shock is the most severe observation recorded, and a model
which groups patients with shock more tightly can therefore be considered a better one.
Analysing the top 20% of best-performing configurations reveals that the Gaussian and

Table 5.4: SOM grid search hyperparameters

Hyperparameter Values
Neighbourhood function ‘gaussian’, ‘mexican hat’, ‘bubble’, ‘triangle’
Sigma 20.0, 15.0, 10.0, 5.0, 2.5, 1.0, 0.05
Learning rate 5.0, 2.5, 1.0, 0.5, 0.25, 0.1, 0.08, 0.05
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Figure 5.10: SOM neighbourhood functions. Four neighbourhood functions used in the
SOM grid search, centred at 0 with sigma 1.

Table 5.5: SOM grid search results

NH function Sigma LR Pearson Spearman GMM ratio

Gaussian 1 0.5 0.454 0.446 0.686
Bubble 10 0.25 0.585 0.634 0.355
Gaussian 10 0.25 0.576 0.637 0.320
Bubble 15 0.05 0.633 0.690 0.390
Gaussian 20 0.5 0.748 0.742 0.421

NH = Neighbourhood; LR = Learning Rate.
The results presented in this table are those of 5 configurations out of 224 trialled
in the grid search, which are representative of how varying different parameters
impacts results.
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bubble neighbourhood functions consistently outperform the triangle and Mexican-hat
functions. Values of sigma in the 5-15 range led to the best density results. Values lying
below that range led to poor distance preservation and points with the shock label being
distributed throughout the map. Configurations with a sigma value of 20 resulted in
maps with better distance preservation, which can be explained by the higher number
of nodes being updated at each iteration, taking more global topology into account.
However, their performance in terms of the density of points with the shock label was
inferior to configurations in the 5-15 range. Finally, the learning rate was found to have
less of an impact, with all tested values lesser than or equal to 0.5 performing similarly
well.

Figure 5.11 shows the differences between adjacent nodes in the low dimensional map
produced using SOMs and Figure 5.12 shows the distribution of observations with the
shock label in the reduced space. The figures show that the reprojections of points are
distributed over nearly all nodes and that there are no clear boundaries between areas
on the map. This indicates that the algorithm was not able to identify subgroups in
the dataset if there are any. While there are no clear separations between areas on the
map, Figure 5.12 does show that points with the shock label are primarily grouped on
the right side of the map. There are however very few nodes which show a majority of
shock patients.
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Figure 5.11: SOM node distance graph. It shows how different each node is from it
neighbours.
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Figure 5.12: Distribution of shock label in map produced using SOM. Pie charts show
the proportion of observations which correspond to the shock label for each node in the map.
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Clustering

When applied to the dengue dataset (subsection 5.2.1), the two-dimensional mappings
produced by the SOM algorithm do not contain any visible clusters. Points are dis-
tributed over most map nodes, making techniques such as DBSCAN, which rely on re-
gions of varying point density to identify clusters, ineffective at finding clusters. GMM
is similarly affected. Techniques such as k-means are able to identify clusters. However,
these are dependant on the shape of the map and not the projection of data points onto
the map. Indeed, k-means divides the map into evenly sized sections, as shown in Fig-
ure 5.13. While these clusters reveal some information about the dataset (Figure 5.14),
they cannot reliably identify disease subgroups or patients at higher risk of developing
complications. Therefore, they are of limited applicability to the current application.
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Figure 5.13: SOM with k-means clustering. The k-means algorithm divides the map
into three evenly sized clusters as there are no clear clusters or variations in how the data is
distributed.

Insights and results

The grid search results illustrate that while distances are generally not well preserved,
some configurations yield maps that project points with the same labels close to one
another. The poor preservation of distances can largely be explained by the limited
number of nodes points are projected onto. While, for the most part, closer points are
more similar to one another, the limited number of locations that points can be mapped
to restricts the extent to which SOMs can be used for similarity retrieval. Indeed, with
many points mapped to the same location, it makes it impossible to distinguish any
further between them. Clustering using traditional algorithms is also limited due to the
broadly even distribution of points over the map.
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Figure 5.14: Distributions for SOM clusters identified with k-means. The distributions
of feature values for each cluster identified in the 2D map using k-means. The proportion of
positive observations is given for binary features such as ‘Abdominal pain’.
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5.2.4 Experiment III: Autoencoders

This experiment aims to determine if autoencoders can be used for dimensionality reduc-
tion to visualise the aggregated dengue dataset (subsection 5.2.1) and perform patient
similarity retrieval using the data in the reduced dimension. The experiment focuses
on the use of standard autoencoders to ascertain which configurations provide the best
performance.

Dimensionality reduction

Autoencoders have multiple parameters which can impact a model’s performance, in-
cluding but not limited to the learning rate, batch size, number of layers and layer sizes,
and the number of training epochs. The learning rate dictates the degree to which the
neural network’s weights will be updated. The batch size determines how many samples
are passed through the network before the weights are updated using backpropagation.
Bigger batch sizes will mean the model gets updated less frequently but with more signif-
icant updates, whereas a small batch size means the model gets updated more frequently
but with less significant updates. The number of epochs establishes how many times the
complete training dataset will be passed through the network. Finally, the network’s
hidden layers dictate how complex of a function or mapping the autoencoder can learn.
A network that uses only linear activation functions will produce results similar to those
obtained using PCA [85]. However, when other activation functions are used, such as
ReLU or sigmoid, the model can learn more complex, non-linear mappings. These non-
linear mappings can lead to a better reconstruction of the input data, signifying less
information loss in the latent space than PCA.

Different parameter combinations were explored using a grid search and compared using
several metrics (section 5.1). In total, 1728 different combinations were tested using the
hyperparameters shown in Table 5.6. The number of hidden layers in the autoencoder
impacts how complex a function it can learn. This directly influences the preservation
of distances, with simpler models with fewer layers obtaining distance metric results

Table 5.6: Autoencoder grid search hyperparameters

Hyperparameter Values

Network layers* []†, [5], [4], [3], [5,4], [5,3], [4,3], [5,4,3], [4,4,3,3]
Activation funcitons ‘ReLU’, ‘Sigmoid’
Learning rate 0.005, 0.001, 0.0005, 0.0001, 0.00005, 0.00001
Epochs 10, 30, 50, 100, 150, 250, 350, 500
Batch size 16, 32

* Network layers refers to the hidden layers used in the encoder. The input
layer and latent layer are not included. The decoder layers are the mirror
image of the encoder layers.
† Network with no hidden layers other than the latent dimension.
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approaching and exceeding PCA’s. The model which obtained the highest values for all
three distance metrics uses only one hidden layer for the latent dimension followed by a
ReLU activation function. The non-linearity provided by the ReLU function allowed the
model to obtain a Pearson coefficient value of 0.940, exceeding the value of 0.925 obtained
by PCA. Distance preservation is, however, not the only goal. Points with similar labels
should be located near to one another, making similarity retrieval applications more
meaningful. Models with more hidden layers produced better density metric results, in
particular for the shock label. The added complexity introduced to the model by the
layers and activation functions allows it to represent high-dimensional data in 2D better
but does it at the expense of distance preservation. However, models with too many
hidden layers produced representations with datapoints very densely grouped in the
latent space, impacting visualisation and utility. The goal of the encoder is to reduce
the dimension of the data with each new layer. In this case, where only five input
features are reduced to two dimensions, introducing new layers has diminishing returns
and can negatively impact the model, as shown in Table 5.7.

Balancing distance preservation and the density metric results produces results covering
more of the latent space, improving visualisation whilst preserving utility, with similar
points grouped closer together. In this case, this balance is achieved by only using
one hidden layer with three neurons in addition to the latent dimension layer, which
produces the output. The Sheppard diagrams in Figure 5.16 illustrate differences in the
distance preservation achieved by different models.

The choice of activation function also affects the produced model. While distance and
density metrics are not heavily impacted by the use of ReLU over sigmoid or visa versa,
the two-dimensional representation of the points is affected. Using the ReLU activation
(Figure 5.15) can cause neurons to be deactivated, producing straight edges in the
latent dimension, which can be hard to interpret (Figure 5.17b). The sigmoid activation
(Figure 5.15) avoids this as it does not entirely deactivate neurons by not producing
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Figure 5.15: Autoencoder activation functions. ReLU (max(0, x)) and Sigmoid ( 1
1+e−x )

activation functions used in the hyperparameter search.
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Table 5.7: Autoencoder grid search results

Layers Activation Pearson GMM Comments
[ ] ReLU 0.940 0.695 The approximate linearity of this model

favours distance preservation.
[ ] Sigmoid 0.917 0.543 The added non-linearity of Sigmoid affects

distance metrics slightly and improves den-
sity metrics.

[3] Sigmoid 0.840 0.321 This model balances distance preservation
and density metric results.

[5, 4, 3] ReLU 0.635 0.104 This complex model has good density met-
ric results but produces dense points in the
latent dimension not apt for visualisation.

(a) Layers: [ ] (ReLU) (b) Layers: [3] (Sigmoid) (c) Layers: [5, 4, 3] (ReLU)

Figure 5.16: Autoencoder Sheppard diagrams. Shows the Sheppard diagrams obtained
for autoencoders with different layer configurations.
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Figure 5.17: Distribution of the shock label in the autoencoder latent space. Ex-
amples of the distribution of patients with shock in latent representations produced by different
models.
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zero values.

Finally, the learning rate used impacts performance, with higher values such as 0.1 lead-
ing to unstable training, preventing the model from converging and producing beneficial
results.

Clustering

When using carefully chosen hyperparameters, autoencoders can produce a latent space
representation of the dengue dataset (subsection 5.2.1), which preserves the distance
relations between points and groups points with the same labels, such as ‘shock’, closer
together. In cases where performance is good when measured by both distance metrics
and density metrics, the points in the latent dimension tend to be distributed over
a larger area, with no distinctly separated clusters. For example, Figure 5.17a shows
points in the latent dimension obtained using one of the best performing hyperparameter
configurations. Points are bounded between zero and one in both the first and second
dimensions due to a sigmoid activation function being used at the output of the code
layer. There are no visibly identifiable clusters, and the points occupy most of the
potential area.

The lack of clear separation between groups of points makes using DBSCAN impossible
as it relies on regions of high point density and low point density to identify clusters.
Whilst points are not uniformly distributed throughout the space, there is no region
with a considerably lower point density that separates the points into multiple clusters
(Figure 5.17a).

The k-means algorithm can be applied in the latent dimension, but, similarly to self-
organising maps, results are not necessarily meaningful or consistent between runs. The
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Figure 5.18: Autoencoder clustering using k-means and GMM. Each colour corresponds
to a different cluster identified by the clustering algorithm. The confidence ellipsoids are shown
for GMM.
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distribution of points in the latent space means that the clusters identified by k-means
are primarily dependent on the random initialisation of centroids. The algorithm will
divide the points in the latent space into k approximately evenly sized clusters where k
is the predetermined number of clusters. That is not to say that k-means cannot identify
meaningful clusters. Figure 5.18b, for example, shows clusters identified by k-means.
13.3% of points in Cluster 0 correspond to patients with shock which is considerably
higher than the dataset average of 4.8%, indicating that this cluster contains a higher
concentration of shock patients than the other two clusters.

As previously mentioned, whilst the data does cover a large portion of the area it is
constrained to, it is not uniformly distributed. Thus, it is possible to apply Gaussian
mixture modelling (GMM) to identify potential subpopulations or groups of patients
within the overall dataset. Doing so with three components leads to the creation of
three clusters, as shown in Figure 5.18a. It is immediately apparent that one of the
clusters has considerable overlap with the portion of the latent space, which contains
the most points with the shock label (Figure 5.17a). Indeed, Figure 5.20 shows that
the three identified clusters show considerable differences in the characteristics of the
points they contain. Cluster 3, which comprises the highest proportion of patients
who suffered from shock (14.9%), has the highest range for haematocrit and the lowest
platelet counts. This is consistent with the literature, which lists thrombocytopenia1

and haemoconcentration2 as primary factors in diagnosing dengue shock syndrome and
dengue haemorrhagic fever [86]. Other factors typically used in diagnosis include bleed-
ing tendencies and plasma leakage, such as the presence of ascites. Cluster 3 shows
increased bleeding rates in all categories, except ‘bleeding gums’, which is considerably
lower in this cluster than in the other two. Similarly, the presence of ascites is highest
in Cluster 3.

Figure 5.19 demonstrates that the five attributes used in training may not be sufficient to
isolate patients with the shock label and group them into a single cluster. The boxplots

1Condition characterised by a low platelet count.
2Increase in the concentration of red blood cells in the blood.
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Figure 5.19: Distribution of features within one cluster. Shows the distributions of
features for patients with and without shock, within the cluster identified using GMM which has
the highest proportion of shock patients (Cluster 3).
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of each attribute for patients with and without shock within Cluster 3 show considerable
overlap suggesting those two groups have similar distributions. This is consistent with
the results found in t-SNE and SOMs, where no parameter configuration and clustering
algorithm could form clusters where the prevalence of the shock label exceeded 20%.

Insights and results

To conclude, when adequately configured, autoencoders can produce two-dimensional
representations of the dengue dataset, which conserve some of the distance relationships
between points and groups similar points close together. The data in the latent space
is continuous, unlike self-organising maps, which makes it possible to perform similar-
ity retrieval on any number of points effectively. Furthermore, the parametric model
produced during training in the form of weights and biases can be used to encode new,
previously unseen data points and represent them in the latent space. The encoding is
done in constant time, making a real-time similarity retrieval system possible. Finally,
subpopulations in the latent space can be detected in an unsupervised manner using
GMM, making it possible to analyse the data further and improve visualisations by
making the presence of groups apparent.
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Figure 5.20: Distributions for autoencoder clusters identified with GMM. The distri-
butions of feature values for each cluster identified in the autoencoder latent space using GMM.
The proportion of positive observations is given for binary features such as ‘Abdominal pain’.
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5.2.5 Discussion and findings

The algorithms have been evaluated in terms of their performance using several metrics
(section 5.1) and their overall ability to be used in a patient similarity retrieval sys-
tem. A comparative summary of the results obtained for t-SNE, self-organising maps,
autoencoders, and PCA is shown in Table 5.8.

Several requirements need to be met by the two-dimensional space produced by a di-
mensionality reduction algorithm if it is to be used for patient similarity retrieval. The
first is that points that are close to one another should be more similar than points that
are far apart from each other. This is measured using the density metrics presented in
section 5.1. The clusters identified using different clustering algorithms can also be used
to evaluate the similarity of points. Indeed if identified clusters differ considerably in
their distributions of features and proportion of observations with a given label, it likely
indicates that points within a cluster are more similar to one another than to points
outside the cluster. The next requirement is that the system must support real-time
usage. That is, there cannot be considerable latency when retrieving similar patients or
encoding new patients. Finally, the two-dimensional representation of points must be
relatively easy to interpret without considerable background knowledge.

Autoencoders were selected as the algorithm of choice for integration into the patient
similarity retrieval system as they can produce models which satisfy all of the above
requirements. Indeed, their metric results and performance in clustering indicate that
points placed close together in the latent space are similar. Furthermore, the weights
learned by the autoencoder during training can then be used to encode new, previously
unseen patients into the latent space in constant time. Whilst new patients can be added
to the system without retraining the model, this should still be done periodically to
ensure the model remains representative of the overall patient population as new entries
get added to the dataset. Finally, autoencoders that use a sigmoid activation function at
the output of the latent layer produce a representation that can be interpreted without
much difficulty. Indeed, autoencoders do not have the complexity of, for example, t-
SNE, where the distances between clusters and their size can change considerably with
perplexity. Autoencoders also have the advantage of training relatively quickly compared
to SOMs and t-SNE.

t-SNE and SOMs were deemed unsuitable for integration into the similarity retrieval
system due to not adequately fulfilling all of the aforementioned requirements. Indeed,
the non-parametric mapping learned by t-SNE cannot encode unseen points making
similarity retrieval using new points impossible to perform in real-time. Furthermore,
the low-dimensional representations of data produced by t-SNE, whilst informative,
require some background knowledge about the algorithm to avoid drawing invalid con-
clusions when analysing them. Moreover, the considerable variations obtained when
using different hyperparameters or random initialisation mean that several plots need
to be considered to make a well-informed analysis of the data.

Self-organising maps present some different limitations, affecting their potential inte-
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gration into the similarity retrieval system. Indeed, whilst the performance for density
metrics rivalled that of AEs, mapping points to a discrete space makes the algorithm
less versatile. The limited number of nodes points can be allocated to means that slight
differences between points cannot be modelled and that new points must be assigned
to one of the existing nodes. Finally, the clustering results obtained for SOMs showed
fewer significant variations between clusters than what was identified for AEs and t-SNE,
further suggesting that the produced maps may not be suited to similarity retrieval.

This analysis has shown that the performance of dimensionality reduction algorithms
is highly dependant on the data being used, and most importantly, the selection of
hyperparameters. When applied to different datasets, these algorithms should be re-
evaluated. The impact of different dimensionality or distributions of observations may
lead to another algorithm or parameter configuration performing better. PCA, for
example, is likely to perform better on a lower-dimensional dataset where its linearity
is not as negatively impactful.
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Table 5.8: Dimensionality reduction and clustering summary

Algorithm Metrics Similarity retrieval Clustering Final comments

t-SNE Performance results are highly de-
pendant on hyperparameter selec-
tion. The best configuration which
identified meaningful clusters ob-
tained a Pearson CC of 0.780 and
a GMM ratio of 0.442.

The lack of clear significance in the
positioning of clusters and the dis-
tance between them impacts the
distance-based similarity retrieval.
The inability to display new data
points using a trained model is also
problematic.

t-SNE is the only algorithm to pro-
duce distinctly separated clusters
and identified a cluster with the
highest proportion of shock patients
out of all algorithms. This suggests
it is a good tool for data analysis.

While t-SNE does create some in-
formative clusters, its inability to
reduce the dimensionality of unseen
data points makes a real-time simi-
larity retrieval system impossible.

SOM Performance in terms of distance
preservation is poor, in large part
due to the discrete space points are
mapped to. Density metric results
are promising, with a GMM ratio of
0.320 on the best performing map.

The discrete space points are
mapped to makes SOM less flexible
in selecting the number of similar
patients to retrieve. It also makes
it impossible to visualise smaller
or less significant distances between
patients as can be done in a contin-
uous space.

There are no clear clusters in the
produced map, and the discrete
space points are mapped to makes
methods such as GMM and DB-
SCAN ineffective. k-means does
identify clusters with different fea-
ture distributions, but these results
are dependent on map shape and
initialisation.

Whilst density metric results are
good, suggesting SOMs are group-
ing similar points closer together,
the limitations imposed by the dis-
crete space limit the applicability to
similarity retrieval.

AE Autoencoders showed good per-
formance for both distance and
density metrics, with the selected
model achieving a Pearson CC of
0.840 and a GMM ratio for ‘Shock’
of 0.321.

The excellent performance shown
for both density and distance met-
rics makes the latent space pro-
duced by the autoencoder appropri-
ate for similarity retrieval. The con-
stant time complexity of encoding
new patients is also beneficial.

While there are no visible clusters
in the latent space, GMM does
identify groups with distinct feature
distributions. This suggests that
patients within the same cluster are
likely to be more similar to each
other than to points outside that
cluster.

Autoencoders present a balance
of good distance preservation and
good results for the density met-
rics. The ability to encode new pa-
tients and its support for higher-
dimensional data make it ideal for
similarity retrieval.

PCA† Distance preservation is particu-
larly good, with a Pearson CC of
0.925 and a Spearman CC of 0.904.
The density metrics, whilst not bad,
are inferior to both SOM and AE.

The good preservation of distances
makes PCA appropriate for simi-
larity retrieval in low dimensional
spaces. However, as dimensionality
increases, the distances in the orig-
inal space become less meaningful,
and PCA’s linear nature can nega-
tively impact results.

PCA produces a 2D representation
of the data similar to that obtained
by AEs. This clustering perfor-
mance is similar to AEs’ with GMM
producing the best clusters.

The performance of PCA is likely to
decrease as dimensionality increases
due to its linear nature.

CC = Correlation Coefficient.
† Linear algorithm
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5.3 Web application evaluation

This section describes the performance and usability metrics used to evaluate the web
app and presents the results obtained for different application pages.

5.3.1 Website usability

Several factors can improve the user experience and usability of a webpage or web app.
Performance is one of the most influential factors affecting usability, and the metrics
used to measure it are presented in section 5.3.2 [87].

Website complexity and ease of navigation are two more factors that have been shown
to play a role in usability [87]. Reducing page complexity allows users to find the
information they are looking for more quickly, making for a better experience [88].
Better navigability and overall page organisation have a similar effect. Finally, the
quality of the content and its usefulness are vital components of a user’s experience [89].

The aforementioned factors were all considered during the web app implementation and
the design of the graphical user interface (GUI).

5.3.2 Performance metrics

Several metrics can be used to evaluate a website’s performance. Obtained results
reflect usability and must therefore be taken into account during development and final
performance evaluations. The following metrics were selected [90, 91]:

• Page load time: time taken to download and display all website content.

• First content paintful: time taken to display the first piece of content (texts or
images) on the webpage. The time taken to display the first element is important
as it demonstrates to the user that their query is being fulfilled.

• Time to interactive: time between a user making a request and the page becoming
fully interactive. Interactive elements include forms, links, and buttons, amongst
others.

• Total blocking time: cumulative time between first content paintful and time to
interactive where the page cannot respond to user input.

• Overall weight: total number of bytes transferred to the user. Reducing overall
weight can reduce loading times. Doing so through compression, however, can
increase the memory usage and processing needed on the client-side.

• Response time: time from a user request to the server response being received.
Looking at average and peak response times can indicate if certain types of requests
are overloading the server.

• Memory usage: analysing peak memory usage and usage over time can reveal
which aspects of the web app need further optimising.
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Web application evaluation

It is important to note that many of these metrics are highly dependent on how and
where the web app is hosted. However, they can still provide valuable insight into how
different iterations of the web app compare and perform.

5.3.3 Performance results

Table 5.9 summarises the results of the performance metrics for each page of the web
app. The app comprises three pages: the dashboard, the similarity retrieval page and
the patient trace page. The first is used as a home page for the web app and to
navigate to other pages. The similarity retrieval page serves as an interface to perform
patient similarity retrieval and visualise results. Finally, the patient trace page is used
to visualise the evolution of a given patient during their hospital stay. The metric
results were obtained using Lighthouse3, an open-source website performance analysis
tool. Simulated network throttling was used with a throughput of 10Mbps to reflect the
average user experience better.

Table 5.9 shows that load times are primarily network bound. Indeed, page load time
on an un-throttled connection is twice as fast as first content paintful on a connection
with limited throughput. This indicates that a user’s experience is impacted, first and
foremost, by their network connection. The overall amount of data transferred when
loading the site remains low through the use of minified JavaScript and CSS files. Mini-
fication removes unnecessary content such as comments and superfluous white space
from source files, reducing the file size. Minified source files had their size reduced by
20% to as much as 50%, improving loading times and reducing data usage.

API response times have a considerable impact on user experience. 100ms is considered
the limit for a response to user interaction to feel instantaneous, and one second is
3https://developers.google.com/web/tools/lighthouse

Table 5.9: Web app performance results

Performance metric Dashboard Similarity retrieval Patient trace

Page load time (ms)† 505 1090 1070
First content paintful (ms) 1100 2200 2000
Time to interactive (ms) 1200 2900 2900
Total blocking time (ms) 10 490 490
Response time (ms)‡ - 450-550 15-25
Overall weight (MB) 0.63 2.1 2.1
Maximum memory usage (MB)§ 7.3 18.9 19.4

Results are obtained using simulated network throttling with a 10Mbps throughput.
† Page load time is recorded with no network throttling.
‡ Records the typical response time for API calls which can be made from that page.
§ Records the maximum observed memory used by the JavaScript elements on the page.
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deemed the upper bound where a user’s flow of thought remains uninterrupted by waiting
times [92]. Longer response times severely affect user experience, and an indication of
progress should be shown to the user to indicate their query is being fulfilled. API calls
to the /get trace endpoint are fast enough to be considered instantaneous, whilst API
calls from the similarity retrieval page (/enc patient and /get k nearest) lie close to
500ms, unlikely to affect a users train of thought.

The overall web application evaluation results are promising and suggest that perfor-
mance is unlikely to be an issue for most potential users. Furthermore, a caching policy
is in place, meaning static files and other resources do not need to be retrieved from the
server at every visit. This drastically reduces the overall amount of data transferred at
each visit, improving load times and, by consequence, user experience.
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Chapter 6

Evaluation

This chapter provides a summary and evaluation of the work achieved in this project.
It first reports on the dimensionality reduction and clustering algorithms considered
throughout this report (section 6.1). It then focuses on an analysis of the system’s
front end and back end (section 6.2). Finally, the project requirements are revisited,
examining how they were addressed throughout this report and in the produced system
(section 6.3).

6.1 Algorithm analysis

This report analysed three methods for their ability to be used in dimensionality re-
duction and visualisation applications: t-distributed stochastic neighbour embedding,
self-organising maps and autoencoders. These non-linear algorithms were also briefly
compared to PCA, a linear method. This analysis demonstrated that meaningful re-
sults can be obtained from all of the above algorithms when adequately configured but
that these cannot necessarily be applied to the similarity retrieval task. Indeed, several
requirements need to be met to make similarity retrieval worthwhile, as illustrated in
subsection 5.2.5.

When evaluating an algorithm’s ability to be used for dimensionality reduction, the
primary factors were the closeness of points with the same label, the ability to show
a previously unseen patient in the two-dimensional space, and the ease of interpreta-
tion of the produced space. On this basis, autoencoders were identified as the most
suitable algorithm when applied to the dengue dataset. t-SNE was deemed unsuitable
due to the necessity to retrain the model for each new patient added. Furthermore,
self-organising maps produced promising density metric results but are limited in their
ability to be used in similarity retrieval due to the discrete space points are mapped to.
However, it was also determined that although not all algorithms were apt for similarity
retrieval, applying clustering algorithms to the produced two-dimensional mappings can
be informative.
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The obtained clusters did consistently show some degree of pertinence, with each algo-
rithm typically identifying one cluster with a heightened proportion of shock patients
compared to the dataset average. This cluster typically showed a median platelet count
of under 100 × 109/L and a heightened haematocrit. In addition, a high proportion
of patients with bleeding and ascites were also observed. These observations are all
included in the World Health Organisation’s clinical case definition for dengue shock
syndrome (DSS) [86]. Therefore, even though the identified cluster may only contain
15-20% of confirmed shock patients, the symptoms and laboratory results indicate that
the majority of patients in the cluster can be considered similar to one another, even
though they may not meet all the criteria defined in the case definition for DSS. This
illustrates that all the dimensionality reduction algorithms considered were able to pro-
duce meaningful results when paired with an appropriate clustering algorithm for the
two-dimensional representation of data produced.

Finally, a noteworthy limitation of the comparative study carried out is that only one
dataset was used. The behaviour of different dimensionality reduction and clustering
algorithms is likely to be affected when the number of features in a dataset or the dis-
tribution of these features is changed. For example, datasets with higher dimensionality
are less likely to result in meaningful representations when a linear algorithm is used to
reduce dimensionality down to two dimensions.

6.2 Front end and back end analysis

The web-based application makes use of the analysed dimensionality reduction algo-
rithms and the produced similarity retrieval system. It comprises two different data
visualisation tools, patient similarity retrieval and patient trace, which provides an
overview of a patient’s condition over time. These pages facilitate retrieval of rele-
vant data, expediting the decision-making process without considerably altering the
standard method used by clinicians. Indeed, diagnoses or treatment plans are often
formulated using existing knowledge and past patient data. This system distances itself
from a number of current solutions by focusing on data retrieval and not providing any
recommendations or automated diagnoses, features which clinicians have criticised for
their lack of transparency and potentially unreliable performance.

The web application performs the initially desired task of patient similarity retrieval
and visualisation of data. It does so with an average API response time of 500ms for
similarity retrieval and 20ms for the patient trace. While 500ms is not low enough to
feel instantaneous to users, it is unlikely to disrupt their train of thought or negatively
impact user experience. This performance is achieved by using k-d trees, a data structure
well suited to nearest neighbour retrieval. The efficient encoding of new patients done
by the autoencoder model also has little impact on the final response time.
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6.3 Revisiting the requirements

As presented in section 3.1, there are three principal requirements which this project
aims to fulfil: data visualisation, patient similarity retrieval and interaction with the
case base. The data visualisation aspect is required as medical data, whether in elec-
tronic health records or other medical datasets, typically contains many features making
it hard to interpret using traditional methods. Reducing the data to a low-dimensional
space is therefore essential towards creating a system that can be used to visualise the
data retrieved using similarity retrieval. The following requirement is patient similarity
retrieval which is also the first stage of case-based reasoning. Retrieving similar pa-
tients can help clinicians make decisions using the typical process of analysing different
data sources, including past patients’ records and outcomes. The final requirement,
“Interaction with the case base”, is the ability to use and interact with the produced
visualisations and patient similarity retrieval system. This requires a user-friendly in-
terface that interacts with the results of the two other requirements. How each of these
requirements was addressed is summarised in Table 6.1.

The first two requirements were successfully addressed using dimensionality reduction.
Indeed, various algorithms were analysed and compared to determine how meaningful
and useful the representations they produce are. Autoencoders were found to group
similar patients close to one another in the latent space. Furthermore, the autoencoder
learns a function that can encode new patients in real-time, making similarity retrieval
possible. Similarity retrieval itself is performed in the latent space using a k-d tree for
efficient recovery of nearest neighbours.

The creation of an interactive web application satisfies the third requirement. Indeed,
the produced application makes it possible to visualise patients in the two-dimensional
space, perform similarity retrieval on either new or existing patients and obtain statistics
about the selected group of patients. Furthermore, the ‘Patient trace’ page makes it
possible to visualise how a patient’s situation progressed since being admitted to the
hospital. A complete overview and user-guide of the implemented GUI is shown in
Chapter 8.
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Table 6.1: Requirements evaluation summary

Requirement Method

Data visualisation

Data visualisation in two-dimensions was made
possible using dimensionality reduction. An
analysis was performed to identify the most suit-
able algorithm for the dengue dataset. Accom-
panying these visualisations with the results ob-
tained via clustering enriches the visualisations.

Patient similarity
retrieval

Dimensionality reduction algorithms were used
in conjunction with kd-trees for fast and effi-
cient retrieval of a customisable number of most
similar patients.

Interaction with the
case base

An interactive web based application was pro-
duced, incorporating elements of both the data
visualisation and similarity retrieval require-
ments.
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Chapter 7

Conclusion

This project has developed an interactive patient similarity retrieval system based on a
careful analysis of various dimensionality reduction algorithms. The system successfully
couples similarity retrieval with visualisations and tabular data to provide an interface
that can analyse similar patients, symptoms, laboratory results and demographics. The
resulting platform augments the clinical decision-making process by facilitating and
accelerating the retrieval of relevant information, making it accessible in an interpretable
format.

The analysis of dimensionality reduction algorithms concentrated on extracting the es-
sential features in a dataset, making the data visualisable in a low-dimensional space,
and the applicability of the method in a similarity retrieval context. Several metrics and
clustering algorithms were used to evaluate the low-dimensional embeddings produced,
verifying their ability to be integrated into the completed system. The discovery of clus-
ters with considerable differences and sound feature distributions validates that nearby
patients in the two-dimensional space are more similar than distant patients, confirming
that the produced results are applicable to patient similarity retrieval.

The produced application was developed with ease of use and navigability in mind. It
supports similarity retrieval using both existing and previously unseen patients, in real-
time, by applying carefully selected algorithms and data structures such as autoencoders
and k-d trees. Moreover, the creation of an extendible web-API improves versatility. It
opens the door to integration into a complete clinical decision support system, perform-
ing stages of case-based reasoning beyond the retrieval of relevant cases.

7.1 Further work

The patient similarity retrieval problem can be approached from different perspectives
or extended to support additional data formats. Indeed, the majority of the methods
considered throughout this project all share a similar process. First, the data is pre-
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processed, with the primary obstacle being the dimensionality of the data. Traditional
clustering algorithms are then applied to the cleaned and dimensionality reduced data
to produce clusters. These can then be analysed to identify any significant patterns in
the data, with the resulting models being integrated into the application.

Temporality

While the ‘Patient trace’ application page uses temporal information when visualising
data, no temporal features are utilised during training. Features such as the time since
admission to hospital or the onset of illness could prove helpful when comparing patients.
Indeed, knowing if a patient’s situation is stable, worsening or improving can influence
treatment decisions. Furthermore, a patient whose situation is deteriorating should
preferably be compared to previous patients who shared the patient’s trajectory. One
possible approach to this problem would be to utilise feature engineering, introducing
new features into the dataset. For example, the percentage change in a feature over the
first three days after admission could be considered.

Image-based data

Electronic health records can sometimes contain results of scans or x-rays. However,
these image-based results can prove particularly hard to analyse and compare as tradi-
tional methods used to examine large amounts of data usually rely on plots and tables,
which are not well suited to images. This issue can be addressed by adapting the process
described in this report. Indeed, autoencoders can be applied to images with impressive
results. Using convolutional layers, as opposed to fully connected layers used in this
report, makes it possible to identify patterns and specific features in images. Convo-
lutional layers also significantly reduce the number of weights in the neural network,
making it possible to use more layers and have more input parameters. The models
produced by convolutional autoencoders could then be seamlessly integrated into the
existing application.

Higher-dimensional data

While the dengue dataset (section 4.1.1) is high dimensional, most features are only
present in a few of the datasets that make up the aggregate. Therefore, a significant
focus was placed on feature selection, resulting in only five attributes being used in the
dimensionality reduction stage. Applying the developed process to a higher dimensional
dataset would likely produce interesting results. Indeed, non-linear methods such as
autoencoders, self-organising maps and t-SNE would likely perform increasingly well
compared to linear algorithms like PCA as the dimensionality increases.
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Chapter 8

User guide

This chapter first describes the installation process (section 8.1), which needs to be
followed to run the web application’s server. The same process is required to train
new dimensionality reduction models or use any of the other developed modules or
utility functions. Usage of the web application is then detailed for both the server
(subsection 8.2.1) and the front end user interface (subsection 8.2.2).

8.1 Installation

The project code repository is hosted on GitHub (Appendix A) and must be downloaded
before proceeding with the installation. This can be done manually on GitHub or using
git clone1:

$ g i t c l one https : // github . com/ o s t i f f / fyp2020−oss1017 . g i t

This project uses Python 3.8 as a primary development language. Running the code, be
it for the server or the dimensionality reduction models, therefore requires a valid Python
installation. This can be done at a system level or through a virtual environment2 to
facilitate the installation of other libraries and requirements.

Several Python libraries must be installed for all components of the application and
other modules to function correctly. These can be installed using pip3, the package
installer for Python, from inside the root directory of the project code:

$ pip i n s t a l l −r requ i rements . txt

1https://git-scm.com/docs/git-clone
2https://docs.python.org/3/tutorial/venv.html
3https://pip.pypa.io/
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8.2 Web application

8.2.1 Server

The web application server can be started from the root directory of the project as
follows, making sure that the virtual environment is activated if one is being used:

$ python pkgname/ a p p l i c a t i o n / s e r v e r . py

The server will be started, and the application made accessible locally in a web browser
using the following URL: http://localhost:5000 or http://127.0.0.1:5000.

The server does require access to the cleaned OUCRU dengue dataset and will not
operate properly without it.

8.2.2 User-interface

The web app comprises three pages: the home page, the similarity retrieval page and the
patient trace page. The home page or dashboard serves as a way of navigating to other
pages. The similarity retrieval page is used to perform patient similarity retrieval on
both new and existing patients. Finally, the patient trace makes it possible to visualise
a patient in the latent space over time.

All pages share the same layout, with a navigation panel on the screen’s left-hand side,
a header indicating the current page and the main content body. An overview of the
features and elements of each page is given as follows:

• Table 8.1 shows the dashboard user interface.

• Table 8.2 shows the similarity retrieval page’s user interface.

• Table 8.3 shows the similarity retrieval form.

• Table 8.4 shows the patient trace page’s user interface.
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Table 8.1: Dashboard user guide.

[A1] Navigation [A2] Interactive dashboard [A3] Reset

Different application pages can
be selected using the navigation
panel. The panel can be collapsed
using the hamburger button in the
upper right to increase the space
allocated to the main content.

This dashboard shows information
about the available pages. The
placement of the tiles is customis-
able and can be changed by drag-
ging and dropping. In the future,
more tiles can be added to show
details such as alerts or reminders.

This button can be used to reset
the dashboard to its original state.



Table 8.2: Similarity retrieval page user guide.

[B1] Navigation [B2] Latent dimension plot [B3] k-Slider [B4] Similarity retrieval form [B5] Statistical summary

Different application pages can
be selected using the navigation
panel. The panel can be collapsed
using the hamburger button in the
upper right to increase the space
allocated to the main content.

This plot is the result of the di-
mensionality reduction process us-
ing an autoencoder. It shows pa-
tients as points in the 2D space
were close-together points indicate
that patients present similar fea-
tures. Similarity retrieval can be
performed by clicking near a point
on the plot.

This slider is used to select the
number of patients queried from
the database in similarity retrieval.
It ranges from a minimum of one
patient to the number of patients
shown on the plot.

This form is used to perform pa-
tient similarity retrieval using data
corresponding to a patient cur-
rently not in the database. A de-
tailed user guide is provided in Ta-
ble 8.3.

This table provides a statistical
summary of the patients retrieved
using similarity retrieval. It com-
pares the selected points to the rest
of the dataset for several features,
including laboratory results, demo-
graphics and symptoms. Statisti-
cal significance is shown in the p-
value column.



Table 8.3: Similarity retrieval form user guide.

[C1] Validation [C2] Form [C3] Submission

Form data is verified on submis-
sion. If entries are invalid, for ex-
ample, out of a valid range, the
changes to be made are shown
here.

Data corresponding to a previously
unseen patient can be entered in
this form to perform patient simi-
larity retrieval. The number of pa-
tients retrieved is set in B3. The
features in the form correspond to
those used in dimensionality reduc-
tion.

The form can be submitted or
cleared using these buttons.



Table 8.4: Patient trace page user guide.

[D1] Navigation [D3] Latent dimension plot [D3] Time slider [D4] Patient search [D5] Random search

Different application pages can
be selected using the navigation
panel. The panel can be collapsed
using the hamburger button in the
upper right to increase the space
allocated to the main content.

This plot is the result of the di-
mensionality reduction process us-
ing an autoencoder. It shows pa-
tients as points in the 2D space
were close-together points indicate
that patients present similar fea-
tures. A patient’s ‘trace’ or evo-
lution over time can be overlayed
on the plot.

This slider is used to highlight part
of the patient trace. The trace up
to and including the selected day
will be highlighted.

This form is used to query a pa-
tient’s data from the database and
display it on D2. Patient’s can
be looked up using their ID, des-
ignated ‘study no’ in the Dengue
dataset.

For illustrative purposes, these
buttons can be used to either
query a random patient or a pre-
determined one from the database.
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G. Barisione, E. Barisione, I. Halilaj, P. Lovinfosse, X. Wang, J. Wu, and
P. Lambin, “Development of a clinical decision support system for severity risk
prediction and triage of covid-19 patients at hospital admission: an international
multicenter study,” European Respiratory Journal, 2020. [Online]. Available:
https://erj.ersjournals.com/content/early/2020/06/25/13993003.01104-2020

[14] A. X. Garg, N. K. J. Adhikari, H. McDonald, M. P. Rosas-Arellano, P. J.
Devereaux, J. Beyene, J. Sam, and R. B. Haynes, “Effects of Computerized Clinical
Decision Support Systems on Practitioner Performance and Patient OutcomesA
Systematic Review,” JAMA, vol. 293, no. 10, pp. 1223–1238, 03 2005. [Online].
Available: https://doi.org/10.1001/jama.293.10.1223

88

https://doi.org/10.1186/s12911-017-0550-1
https://www.sciencedirect.com/science/article/pii/S1877050919322690
https://www.sciencedirect.com/science/article/pii/S1877050919322690
https://erj.ersjournals.com/content/early/2020/06/25/13993003.01104-2020
https://doi.org/10.1001/jama.293.10.1223


REFERENCES

[15] T. J. Bright, A. Wong, R. Dhurjati, E. Bristow, L. Bastian, R. R. Coeytaux,
G. Samsa, V. Hasselblad, J. W. Williams, M. D. Musty, L. Wing, A. S. Kendrick,
G. D. Sanders, and D. Lobach, “Effect of clinical decision-support systems: A sys-
tematic review,” Annals of internal medicine, vol. 157, no. 1, pp. 29–43.

[16] T. Davenport and R. Kalakota, “The potential for artificial intelligence in
healthcare,” Future healthcare journal, vol. 6, no. 2, pp. 94–98, Jun 2019,
31363513[pmid]. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/31363513

[17] Healthcare technology innovation adoption : electronic health records and other
emerging health information technology innovations, ser. Innovation, Technology,
and Knowledge Management. Cham, Switzerland: Springer, 2016 - 2016.

[18] H. Petkus, J. Hoogewerf, and J. C. Wyatt, “What do senior physicians think about
ai and clinical decision support systems: Quantitative and qualitative analysis of
data from specialty societies,” Clinical Medicine, vol. 20, no. 3, pp. 324–328, 2020.
[Online]. Available: https://www.rcpjournals.org/content/20/3/324

[19] M. Laka, A. Milazzo, and T. Merlin, “Factors that impact the adoption of clinical
decision support systems (cdss) for antibiotic management,” International journal
of environmental research and public health, vol. 18, no. 4, pp. 1901–, 2021.

[20] A. Adadi and M. Berrada, “Peeking inside the black-box: A survey on explainable
artificial intelligence (xai),” IEEE Access, vol. 6, pp. 52 138–52 160, 2018.

[21] S. Berman, “Clinical decision making,” in Berman’s Pediatric Decision Making
(Fifth Edition), fifth edition ed., L. Bajaj, S. J. Hambidge, G. Kerby, and
A.-C. Nyquist, Eds. Saint Louis: Mosby, 2011, pp. 1–6. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/B9780323054058000103

[22] D. L. Sackett, W. M. C. Rosenberg, J. A. M. Gray, R. B. Haynes,
and W. S. Richardson, “Evidence based medicine: what it is and what
it isn’t,” BMJ, vol. 312, no. 7023, pp. 71–72, 1996. [Online]. Available:
https://www.bmj.com/content/312/7023/71

[23] B. Hernandez, P. Herrero, T. Rawson, L. Moore, E. Charani, A. Holmes, and
P. Georgiou, “Data-driven web-based intelligent decision support system for infec-
tion management at point-of-care: Case-based reasoning benefits and limitations,”
01 2017, pp. 119–127.

[24] A. Aamodt and E. Plaza, “Case-based reasoning: Foundational issues, method-
ological variations, and system approaches,” Ai communications, vol. 7, no. 1, pp.
39–59, 1994.

[25] D. Chushig-Muzo, C. Soguero-Ruiz, A. P. Engelbrecht, P. De Miguel Bohoyo, and
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Ŕıo, M. Wiebe, P. Peterson, P. Gérard-Marchant, K. Sheppard, T. Reddy,
W. Weckesser, H. Abbasi, C. Gohlke, and T. E. Oliphant, “Array programming
with NumPy,” Nature, vol. 585, no. 7825, pp. 357–362, Sep. 2020. [Online].
Available: https://doi.org/10.1038/s41586-020-2649-2

[70] S. Behnel, R. Bradshaw, C. Citro, L. Dalcin, D. Seljebotn, and K. Smith, “Cython:
The best of both worlds,” Computing in Science Engineering, vol. 13, no. 2, pp. 31
–39, 2011.

[71] G. Vettigli, “Minisom: minimalistic and numpy-based implementation of the
self organizing map,” 2018. [Online]. Available: https://github.com/JustGlowing/
minisom/

93

https://bahp.github.io/vital-oucru-clinical/datasets/overview.html
https://bahp.github.io/vital-oucru-clinical/datasets/overview.html
https://doi.org/10.5281/zenodo.3509134
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1038/s41586-020-2649-2
https://github.com/JustGlowing/minisom/
https://github.com/JustGlowing/minisom/


REFERENCES

[72] P. T. Inc. (2015) Collaborative data science. Montreal, QC. [Online]. Available:
https://plot.ly

[73] J. L. Bentley, “Multidimensional binary search trees used for associative searching,”
Commun. ACM, vol. 18, no. 9, p. 509–517, Sep. 1975. [Online]. Available:
https://doi.org/10.1145/361002.361007

[74] H. M. Kakde, “Range searching using kd tree.” Aug 2005. [Online]. Available:
http://www.cs.utah.edu/∼lifeifei/cis5930/kdtree.pdf

[75] “Shepard diagram.” [Online]. Available: https://www.oxfordreference.com/view/
10.1093/oi/authority.20110803100501161

[76] J. Duignan, “Pearson correlation,” 2016. [Online]. Avail-
able: https://www.oxfordreference.com/view/10.1093/acref/9780191792236.001.
0001/acref-9780191792236-e-423

[77] M. Elliot, I. Fairweather, W. Olsen, and M. Pampaka, “Spearman’s correlation,”
2016. [Online]. Available: https://www.oxfordreference.com/view/10.1093/acref/
9780191816826.001.0001/acref-9780191816826-e-0382

[78] W. J. Krzanowski, Principles of multivariate analysis : a user’s perspective, revised
edition. ed., ser. Oxford statistical science series ; 23. Oxford: Oxford University
Press, 2008.

[79] C. C. Aggarwal, A. Hinneburg, and D. A. Keim, “On the surprising behavior of
distance metrics in high dimensional space,” in Database Theory — ICDT 2001,
J. Van den Bussche and V. Vianu, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2001, pp. 420–434.

[80] K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft, “When is ”nearest neigh-
bor” meaningful?” ICDT 1999. LNCS, vol. 1540, 12 1997.

[81] J. Grus, Data science from scratch, 1st ed. Sebastopol, CA: O’Reilly, 2015 - 2015.

[82] J. Whitehorn and J. Farrar, “Dengue,” British medical bulletin, vol. 95, no. 1, pp.
161–173, 2010.

[83] M. Wattenberg, F. Viégas, and I. Johnson, “How to use t-sne effectively,” Distill,
2016. [Online]. Available: http://distill.pub/2016/misread-tsne

[84] J. Tian, M. Azarian, and M. Pecht, “Anomaly detection using self-organizing maps-
based k-nearest neighbor algorithm,” in European Conference of the Prognostics and
Health Management Society 5, 2014.

[85] B. C. Boehmke and B. M. Greenwell, “Hands-on machine learning with r,” 2019.

[86] W. H. Organization, “Dengue haemorrhagic fever : diagnosis, treatment, prevention
and control,” pp. Chinese–1ed–, 1997.

94

https://plot.ly
https://doi.org/10.1145/361002.361007
http://www.cs.utah.edu/~lifeifei/cis5930/kdtree.pdf
https://www.oxfordreference.com/view/10.1093/oi/authority.20110803100501161
https://www.oxfordreference.com/view/10.1093/oi/authority.20110803100501161
https://www.oxfordreference.com/view/10.1093/acref/9780191792236.001.0001/acref-9780191792236-e-423
https://www.oxfordreference.com/view/10.1093/acref/9780191792236.001.0001/acref-9780191792236-e-423
https://www.oxfordreference.com/view/10.1093/acref/9780191816826.001.0001/acref-9780191816826-e-0382
https://www.oxfordreference.com/view/10.1093/acref/9780191816826.001.0001/acref-9780191816826-e-0382
http://distill.pub/2016/misread-tsne


REFERENCES

[87] J. W. Palmer, “Web site usability, design, and performance metrics,” Information
systems research, vol. 13, no. 2, pp. 151–167, 2002.

[88] A. N. Tuch, J. A. Bargas-Avila, K. Opwis, and F. H. Wilhelm, “Visual complexity
of websites: Effects on users’ experience, physiology, performance, and memory,”
International journal of human-computer studies, vol. 67, no. 9, pp. 703–715, 2009.

[89] A. Dickinger and B. Stangl, “Website performance and behavioral consequences: A
formative measurement approach,” Journal of business research, vol. 66, no. 6, pp.
771–777, 2013.

[90] O. Hagai. (2020, Feb) Need for speed: Top 10 web performance met-
rics you must monitor. [Online]. Available: https://www.namogoo.com/blog/
conversion-rate-optimization/top-10-web-performance-metrics/

[91] E. Frieman. (2019, Aug) Website performance metrics. [Online]. Available:
https://keymedium.com/website-performance-metrics/

[92] J. Nielsen, Usability Engineering. Morgan Kaufmann, 1994.

95

https://www.namogoo.com/blog/conversion-rate-optimization/top-10-web-performance-metrics/
https://www.namogoo.com/blog/conversion-rate-optimization/top-10-web-performance-metrics/
https://keymedium.com/website-performance-metrics/




Appendix A

Project source code

The project repository is available on Github:

https://github.com/ostiff/fyp2020-oss1017
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