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Abstract

Throughout this project and thesis, a Severe Dengue Predictor was developed and

deployed on a web-based application. The model uses LSTM as the basis for the neural

network architecture because of its ability to handle time-series data, especially clinical

data, which was proven several times through different researches. From the data set

provided by OUCRU, a small number of features were selected based on correlation

test and WHO Severe Dengue guidelines: vomiting, body temperature, respiratory rate,

haemoglobin, haematocrit percent, platelet count, bleeding vaginal, bleeding mucosal, and

abdominal pain.

The neural network architecture has had it hyper-parameter tuned before beginning the

training process. The training result was validating through K-Fold cross-validation pro-

cess, which ensures that biased result is minimal. With models’ performance ranging from

adequate to excellent, a web-based application has been developed to deploy those train

models. A random simulation for the application is also shown in this thesis. Through

those simulation, the performance of this machine learning application is verified to be

adequate in real-life scenarios.
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Chapter 1

Introduction

This thesis and final year project aims to develop a machine learning predictive model that

could aid the healthcare professionals in diagnose, control, and give treatment to Dengue

patients efficiently. Using clinical data that has been recorded at Ho Chi Minh Hospital

for Tropical Diseases, a Long Short-Term Memory architecture has been developed to

diagnose the possibility of developing Severe Dengue complications in Dengue patients.

1.1 Motivation

Machine learning in healthcare is an important application that has been growing rapidly

along with big data. Thanks to the healthcare sector that has quickly adapted to the new

technology, massive patient’s clinical data has been recorded and is easily accessible for

data and machine learning scientists to use and develop life-changing technology to aid

the process of diagnosis, treatment, etc.

Knowing the power of machine learning, along with the risk and burden of Severe Dengue

around the world, there is a lot of interest in using machine learning to diagnose and

mitigate the risk for patients, hospitals, and the economy, especially with infectious

disease that affects billions of people every year, such as Dengue.
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With the seriousness of Severe Dengue, which is a more critical development of Dengue,

it is very important that the patient receives proper treatment at the right time to avoid

severe complications and even death. However, for developing countries to cope with

millions of people during the outbreak period, it is a very devastating scenario where

hospitals are out of beds, patients cannot get the much-needed treatment, and where

doctors are completely exhausted and overworked. A of people are fortunate enough to

get hospitalised. However, a lot of them are also turned out to not develop Severe Dengue,

which in the end results in a lot of cost and expense from not just only hospitalisation,

medication, …but also loss of work, transportation, etc.

1.2 Thesis Outline

In Chapter 2, background information of Dengue and Severe Dengue will be presented,

followed by a brief introduction of the machine learning application that has been re-

searched and developed to control Dengue outbreaks through different means. Chapter 3

will give a more in-depth summary regarding analysis of different types of Dengue

classifiers that have been developed throughout the years. Furthermore, two prominent

examples of using LSTM in healthcare, which particularly involves using clinical data for

training. Chapter 4 introduces the theory side of the machine learning algorithm that

will be using throughout this project, recurrent neural network, particularly LSTM, and

other neural network components used to optimise performance.

Chapter 5 introduces the data set used for this project, and how 10 variables were

identified and used to train the machine learning model. Furthermore, data processing

techniques such as data imputation, formatting, standardisation have also been exten-

sively talked about in Chapter 5. After a considerable amount of data information has

been covered, a section regarding data visualisation will show readers the nature of clini-

cal data set as a whole, and in particular the OUCRU data set which is used in this project.
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Chapter 6 dives into the preliminary neural network architecture along with its hyper-

parameter tuning process, including parameters such as dropout rate, LSTM units,

learning rate, and number of epochs. The result obtained from training on this archi-

tecture is presented in Chapter 7, which also included a section on improving the model

through ways of dealing with imbalanced data set. After obtaining different models

for Severe Dengue Predictors, an application was built to deploy those models. The

application is introduced and a brief instruction on how to use is provided in Chapter 8.

Furthermore, Chapter 8 also simulates some known samples to observe how the predictors

perform in a more real-life scenario. The observation from simulation is then used in to

further improve the initial model in Chapter 9 and get a better performance in simulation.

Some further discussion including weighing the pros and cons of this predictor compared

to others in Chapter 3, as well as some recommendations on how to improve the predictor’s

performance and user experience of the model deployment are discussed in Chapter 10.

Finally, Chapter 11 concludes the achievement of this project.
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Chapter 2

Background

2.1 Dengue and Severe Dengue

Dengue is a mosquito-borne viral infection that has affected the tropical parts of the

world for decades, with hundreds of millions of people affected each year. Since climate

changes, global warming, and many other side effects of technology advances, Dengue has

started to spread to non-tropical places such as Europe and America.

Dengue virus is transmitted through infected mosquito, primarily Aedes aegypti, or Aedes

albopictus mosquitoes [5]. As of 2015, the Aedes aegypti mosquito can be found over

188 countries, posing risks to 3 billion people with contracting Dengue infection [6].

Meanwhile, Aedes albopictus, which is considered a secondary vector in Asia, has started

to infect American and European countries. It has been identified as the primary source

of Dengue infection where Aedes aegypti is not present. Compared to Aedes aegypti,

Aedes albopictus is more resistant to climate changes, namely colder conditions, hence its

migration evidence is more abundant compared to Aedes aegypti. The mosquitoes may

have been migrated by chance through international trading of bamboos, tyres, and other

goods [5].

Dengue exhibits symptoms similar to flu such as high fever, headache, nausea, rash, …, and
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can affects people of all ages from infant to adult. Most of the time, Dengue will go away

after 1-2 weeks without any long-term effect and any hospitalisation. However, in other

cases, the infection can further develop into Severe Dengue, which causes complications

and has mortality rate up to 20% when untreated [5]. From the first glances, it is hard to

determine if a Dengue patient will progress to develop Severe Dengue. From WHO [5], the

development of Severe Dengue starts to become diagnosable when the fever subsides. It is

during this phase that the combination of different clinical data served as warning signs

for Severe Dengue: severe abdominal pain, persistent vomiting, rapid breathing, fatigue,

bleeding in gum, and vomit. Some of the outcome of Severe Dengue includes severe

plasma leakage (which can then lead to shock), severe bleeding, and severe organ impair-

ment (which affects liver, heart, other organs, and patient’s consciousness). Receiving

proper treatment on time is extremely important for Severe Dengue, as untreated patients

have up to 50% mortality rate while the chances lower to 2%-5% when treated properly [7].

Figure 2.1: Overcrowded Hospital During Dengue Outbreak with 2 Patients Sharing
A Bed [1]
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Dengue places a very heavy strain on the medical infrastructure and the economy of

developing countries. According to Felipe et al, Vietnam is burdened with roughly 2

million infection per year, which costs up to $95 million annually [8]. Most of the cost

comes from hospitalisation, loss of income and productivity, transportation, medicines,

… [9]. Patient hospitalisation is a big factor when it comes to the burden of the Dengue

outbreak. The diagnosis of Severe Dengue is not efficient and has been based mostly on

doctor’s expertise and experience. During an outbreak, hospitals are overcrowded with

patients, doctors are overworked, and their judgement may not be as accurate as the

normal time. As a result, at those times, hospital are often overflowing with patients and

no available bed. A lot of patients with Severe Dengue may not find a slot to receive proper

treatment on time, and a lot more patients may be unnecessarily hospitalised because of

misdiagnoses. It is a very serious problem especially in developing countries where hospital

infrastructure is not big enough to cope with the outbreak.

2.2 Machine Learning Application for Dengue

Machine learning has been utilised and delivered great models, applications for the

healthcare sector. Many diseases can be predicted using machine learning model and

health records such as medical images, vital data, test results, etc. A lot of research

are focused on using different medical data to diagnose early-stage cancer. Robots are

capable of performing surgery with or without assistance, and provide rehabilitation

assistance [10].

With many examples that show how useful and effective machine learning is in healthcare,

it is inevitable that there is a huge interest in applying machine learning to help control

Dengue and reduce the burden it places on the economy. There has been research on

using machine learning to forecast Dengue outbreaks using environmental data such as

temperature, humidity, wind speed, and rain fall. A particular SVM model from [11]

achieved a promising result with a sensitivity of 64%, specificity of 95%, and precision of

56% using those aforementioned features. This result signifies the potential of the project
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in controlling a Dengue outbreak. There has been similar research that utilise a wider

range of meteorological factors in the analytic model.

The aforementioned types of machine learning models focus on predicting when the next

outbreak will happen. It is possible because many meteorological factors such as humidity

and temperature can encourage the breeding of Aedes aegypti mosquitoes. Successfully

predicting the next wave will give the government and suitable authority time to plan

ahead their infrastructure and send support to the usual critical area in a timely manner.

This is a proactive option to control Dengue.

Oxford University Clinical Research Unit (OUCRU) has taken the lead to carry out

studies that provide reactive options to tackle Dengue. In more than 10 years, OUCRU

has recruited thousands of patients with Dengue and Severe Dengue to collect medical

data. More than 6 different studies are available with their respective data that can be

used for early diagnosis and risk prediction models. Traditionally, doctors relied on their

expertise, experience, and guidelines from reputable organisations such as WHO to diag-

nose whether or not a patient may develop Dengue or Severe Dengue. This method is very

dependent on the doctors’ skills and in an outbreak settings, manpower can be limited.

This is why reactive as well as proactive control are both important in controlling Dengue.

With the database from OUCRU, several research has been done in using statistical

models to analyse the data and find out the important features which lead to the diagnosis

of Dengue and Severe Dengue [12] [13] [14]. Furthermore, several classifiers have been

developed such as the Early Dengue Classifier with a sensitivity of 74.8% and specificity

of 76.3% [15], which will be further analysed in Chapter 3.
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Chapter 3

Literature Review

3.1 Early Dengue Classifier

To aid the fast and early identification of a Dengue outbreak, medical doctors and

researchers were interested in using NS1 Ag Strip rapid test. The gold standard of

Dengue testing comprises RT-PCR, IgM serology, and NS1 ELISA. According to [16],

RT-PCR bears a sensitivity and specificity of 89.9% and 100%, respectively. NS1 ELISA

performance scores between 76%-97% for sensitivity and 98%-100% for specificity as

stated in published literature. Compared to those gold standard tests, NS1 rapid test

bears a lower performance of sensitivity and specificity of 81.5% and 66.7% according to

present study [16].

With the NS1 rapid test having lower performance, it was in the researchers’ goal to

develop an Early Dengue Classifier to use in conjunction with the rapid test to increase

overall performance. A multivariate logistic regression model with clinical data from

OUCRU was developed to detect Dengue within the first 72 hours of illness. The optimal

set of features comprises age, white cell count, and platelet count. It is necessary to have

as few features as possible and still perform adequately to allow a speedy and reliable

diagnostic. [15]
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The Early Dengue Classifier has a sensitivity and specificity of 75% and 76% by itself.

When using in conjunction with the NS1 Ag rapid test, the combined sensitivity and

specificity increase to 91.6% and 75.7%. A higher specificity can also be achieved by using

a higher cut-off value. For example, with a cut-off value of 50% (previously 33.3%), the

Early Dengue Classifier specificity can rises to 89.6% while sensitivity lowers to 86%. [15]

The development of Early Dengue Classifier shows that the use of machine learning in

both reactive and proactive control is realisable and will bring great results when using in

conjunction with pre-existing medical technology. The authors of Early Dengue Classifier,

Nguyen Minh Tuan et al [15, p. 10] emphasises the strength of their study based on

“large sample size, the presence of all four DENV serotypes, robust statistical validation

techniques and transparent performance characteristics”. Based on the performance of

Early Dengue Classifier, other researchers have an evidence-based simple, but working

model to start with and further improve its performance through other statistical and

machine learning methods. One of the cons of the Early Dengue Classifier is its robustness.

The classifier relies on hematology findings that are not accessible outside of primary care,

and the use of age in features will likely reduce the model’s generalisation power in other

populations where Dengue affects other age groups differently. Despite the weaknesses

presented above, it has paved the way in developing a predictor to aid the doctors and

hospitals in Dengue diagnosis, patient triage, and outbreak management.

3.2 Dynamic Dengue Haemorrhagic Fever Calculators

Dengue Haemorrhagic Fever (DHF) is one of the Severe Dengue outcomes defined by the

World Health Organization. In 2019, 2 different calculators were developed to calculate

the risk of developing Dengue Haemorrhagic Fever from Dengue patients. The features

for 2 calculators are selected using LASSO. There are 2 different types of features used in

the research conducted by Ken Wei Tan et al [4], daily features and admission features.

Daily features are daily clinical measurements that may change drastically throughout

a patient’s hospitalisation. And admission features are measurements collected at the
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admission of patients to the hospital, which will be constant.

The first calculator DART (DAily Risk Tomorrow) calculates the risk of having DHF

the subsequent day based on daily clinical measurements and some other clinical data

at admission. Some of the very important features found for DART are platelet counts,

maximum temperature on day 6, maximum basophil count, minimum diastolic blood

pressure, and number of day(s) since fever onset. Those features have high coefficient in

DART model, which helps adding great predictive power to the calculator. DART scores

97.6% and 9.4% for sensitivity and specificity, respectively. While the specificity is low,

the sensitivity score is very promising as it demonstrates the ability of the calculator to

avoid false-negative diagnosis of patients with DHF. However, if the calculator is intended

to use to reduce the burden on the hospital system, the model needs to be further

improved, especially on its specificity score [4]. This remark is further supported by

Table 3.1 where DART’s PPV and NPV are recorded to be 1.9% and 99.5 % respectively.

Those figures mean that out of everyone that is tested positive by DART, only 1.9% turns

out to be true positive. With this performance, DART will not be able to adequately

reduce the number of patients overflowing the hospitals during an outbreak and help

reduce the burden on hospitals and the economy.

Sensitivity (%) Specificity (%) PPV (%) NPV (%)
DART 97.6 9.4 1.9 99.5
DARE 1-4 97.6 15.4 9.7 98.6
DARE 5 97.8 16.1 9.2 98.8
DARE 6 97.6 16.2 7.3 99
DARE 7 97.8 15.7 4.8 99.4
DARE 8 98.4 24.9 2.6 99.9

Table 3.1: Performance of DART and DARE Calculators [4]

The second type of calculator is DARE (DAily Risk Ever), which predicts the risk of

having DHF at a day in the future using only admission features. In research done by

Ken Wei Tan et al. [4], 5 different DARE models were developed, which predict 1-4, 5,

6, 7, or 8 days into the future if the patient may face Dengue Haemorrhagic Fever on
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that day. The performance of DARE calculators is shown in Table 3.1. As the calculator

predict further into the future, its performance decreases in term of PPV, while NPV

steadily increases.

Through the research, some variables were suggested to have a positive association with

DHF such as pre-existing lung or cardiac conditions, and HIV/AIDS. Other characteristics

such as being younger, male, and ethnic Indian are found to be negatively associated

with DHF. Furthermore, the warning signs in WHO guidelines are observable in this study.

In this study, it is mentioned that one of the biggest “hindrances to the generalisability

of DHF calculators …is the number of measurements required” [4, p.13]. Just like a usual

data set, there are missing values amongst this data. Although all features are recorded

at admission, not all of them are updated throughout a patient’s stay. This problem was

solved with imputation and some degree of assumption. However, there is still a problem

if trying to deploy this model and run a clinical trial. A lot of data recorded from medical

tests are not feasible to get recorded every day. As a result, for real-life application,

missing values will be a recurrent problem.

3.3 Prognostic Models for Early Identification of Severe

Dengue Cases

Early risk prediction of Severe Dengue is crucial in hospital systems and outbreak

management for endemic countries. An Early Severe Dengue Identifier was developed by

Nguyen Minh Tuan et al. [17] using logistic regression with features that were verified to

be independently associated with Severe Dengue through the multivariate logistic model.

The features of the final model include history of vomiting, platelet count, AST, and NS1

rapid test status at the time of enrollment. This is a simple model, however, the result

shows how promising this model can be with sensitivity and specificity of 87% and 88%
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respectively.

Compared to the DART and DARE calculators where more features were used in models,

the performance of ESDI is surprisingly good. ESDI uses some features that are associate

with WHO warning signs such as vomiting and platelet count. The performance of ESDI

suggests that the incorporation of features related to Severe Dengue may enhance the

performance of the predictor.

ESDI is supposed to be able to predict all the outcomes of Severe Dengue, which includes

severe plasma leakage, severe haemorrhage, severe organ impairment, and shock. How-

ever, in the actual paper, Nguyen Minh Tuan et al. [17] did not clarify the distribution

of those outcomes within the data set. From both of the research papers [17] [4], some

very important features have been identified will be referred to when developing a new

predictor for this project.

3.4 LSTM in Healthcare

LSTM is a type of recurrent neural network, which will be explained in more detail in

Section 4.2. LSTM’s specialty is handling time series data, which is most of the clinical

and biomedical data. As a result, there is great interest in using LSTM for the healthcare

machine learning model.

Jing Xia et al. [2] finds the necessity of having a model predicting ICU patients’ mortality

as well as a model improving doctor’s prognosis accuracy. LSTM was compared against

several other algorithms (SAPS II, SOFA, APACHE II) and was found to have the best

performance when using clinical data to assess patient’s risk of death.

In Figure 3.1, it can be observed that with only 3 days worth of data, LSTM and eLSTM
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Figure 3.1: Performance of Mortality Predictors Day 1-10 [2]

were able to reach the highest performance that SAPS II, SOFA, and APACHE II models

obtained on day 10. For an ICU patient, a precise and early mortality prediction is

essential for the doctors to devise new treatment plans and for hospitals to give patients

the proper priorities. Because of its ability to observe the trend and dependencies in

clinical data throughout time, LSTM was able to pick up more learning hypotheses than

a normal model that cannot handle temporal data.

Another application that has found success in LSTM is predicting healthcare trajectories

from medical records. Modern electronic medical records have partially eliminated the

doctor’s need to ask for a brief medical history recap from a patient. The diagnosis
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accuracy depends not only on the doctor’s experience and expertise, but also on the

patient’s ability to recount his or her medical history accurately. Using LSTM-based

architecture, Trang Pham et al. [18] developed DeepCare, a neural network model

that reads electronic medical records, takes current illness state, data and predicts

medical outcomes for the future. Electronic medical records contain data such as

family medical history, past diagnosis, symptoms, clinical data from monitoring devices,

and clinician’s observation. In the research [18], DeepCare was tested to predict

unplanned readmission of diabetes and mental-heal patients within 12 months and 3

months, respectively. With the best F-score of 79%, DeepCare has proven its feasibility

of using LSTM and big medical data to predict health trajectories up to a year in advance.

From the report of LSTM performance on healthcare data, it is quite reasonable to make

the assumption that an LSTM-based architecture for Severe Dengue Predictor would pro-

duce a model with better performance than models using logistic regression and multi-

variate logistic because of clinical data’s time series nature. The memory of a recurrent

network allows the model to process, learn, and memorise the knowledge taken from a

sequence of data.
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Chapter 4

Machine Learning Algorithm

4.1 Recurrent Neural Network

Figure 4.1: Schematic of RNN cell [3]

RNN is a type of neural network that allows the use of previous output as the next state
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input. It has the advantage of taking account of historical data, which is why it is popular

for time series data [19]. A RNN typically contains several recurrent cells using tanh or

sigmoid activation functions. The cell from Figure 4.2 can be expressed mathematically:

ht = σ(Whht−1 +Wxxt + b),

yt = ht

(4.1)

Where xt, ht, and yt represent the input, hidden state or recurrent information, and

the output at time t, while W is the weight for the respective element. Compared to

a regular fully-connected layer, RNN has a hidden state element in its system that

takes into account the previous state input’s representation. This element allows RNN

architecture to process a long sequence of data one-by-one, with previous information

being passed on to the next input. If a time-series sequence is to be fed into a traditional

feed-forward neural network, all of the data will be fed in at the same time, and there

will be dependencies between time-step that a traditional neural network cannot pick up.

Figure 4.2: Types of RNN Architectures

Because a sequence of data is fed one-by-one into RNN, there can be many types of

RNN architecture such as one-to-many, many-to-one, and many-to-many. Each type
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of architecture has a unique combination between input and output. The one-to-many

type takes a single observation (image or word,…) and has many RNN cells to produce

multiple outputs at each cell. One example of one-to-many RNN type is music generation

where a single musical note or tone is fed into the model and multiple notes will be

produced in sequence. In this case, the previous resulted musical note will affect the next

one and so on so forth. The many-to-one architecture takes a sequence of observation

and performs classification, which is usually seen in sentiment classification problem.

The many-to-many architecture finds its application in many problems such as machine

translation, generating text, speech recognition, …

For RNN, the final loss L is an accumulation of each loss at each time-step. Thus, the

loss optimisation process is done at each time-step T, which can be expressed as shown in

Equation 4.2, where the gradient at time-step T is calculated by taking the derivative of

L at time-step T with respect to the weight matrix W.

L(ŷ, y) =
Ty∑
t=1

L
(
ŷ(t), y(t)

)
∂L(T )

∂W
=

T∑
t=1

∂L(T )

∂W

∣∣∣∣∣
(t)

(4.2)

RNN suffers from short-term memory because of the vanishing gradient problem.

Vanishing gradient is when the updated value after back-propagation becomes so small

that it does not contribute anything to the already learned information. Eventually, the

layers that get these small update values stop learning. In RNN, the vanishing gradient

usually occurs at the first layers in a longer sequence. As a result, the model may forget,

or leave out important details at the beginning of the sequence [20].
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4.2 Long Short-Term Memory

LSTM is an improved version of the traditional recurrent neural network developed

to solve the short-term memory or vanishing gradient problems in back-propagation

by having multiple gates to control the learning of a cell, including forget, input, and

output gates. Furthermore, aside from the hidden state which carries the previous state’s

representation, a cell state is also added into LSTM. Compare to a hidden state, a cell

state has better long-term memory capability, which can store not only information from

the immediately previous state, but also many other previous states.

Figure 4.3: Schematic of LSTM Cell [3]

A forget gate ft determines which information in an input sequence is not important and

can be ignored, essentially allows LSTM to only pick the relevant information to learn.

An input gate it and c̃t is used to update the cell state using previous hidden state and

current input. Both of the inputs are passed into the sigmoid and tanh activation function

in the input gate. By passing them into the sigmoid function, it does the exact thing as

the forget gate does, choosing which values to be important and not. Meanwhile, passing

the inputs into the tanh function will transform the values to be between [−1, 1] and helps

them not exploding when going through mathematical operations. The outputs of for-
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get gate, ft ·ct−1, and input gate, ft, it ·c̃t are added together and become the new cell state.

ft = σ
(
Wf(h)ht1 +Wf(x)xt + bf

)
it = σ(Wi(h)ht−1 +Wi(x)xt + bi)

c̃t = tanh
(
Wc̃(h)ht−1 +Wc̃(x)xt + bc̃

)
ct = ft · ct−1 + it · c̃t

ot = σ
(
Wo(h)ht−1 +Wo(x)xt + bo

)
ht = ot · tanh(ct)

(4.3)

Alternatively, we also can observe how LSTM works through Equation 4.3. All the forget

gate and input gate, or calculation of ft, it, c̃t is to get the cell state ct. Equations 4.3

and Figure 4.3 demonstrate that a cell state only carries relevant information from the

last states as well as the current state. The cell state is then used to calculate LSTM cell

output ht and transferred to the next cell. The addition of cell state allows LSTM to

easily process the long sequences that often pose problems to RNN [3]

4.3 Dropout

Dropout is a regularising method effective at reducing the overfitting problem usually

presented in machine learning models. While there are other methods to reduce over-

fitting, they are often complicated and requires more computational power. Dropout is

very popular in deep learning because of its cheap computational expense.

Depends on the size of the model, a neural network architecture can consist of hundreds

to millions of nodes or activation functions. When training a large network on a relatively

smaller data set, overfitting will undoubtedly become a problem which signals that the

generalisation power of the model is poor. This happens because the model is so complex,
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it was able to “memorise” everything it sees from the small training set, which in turn

gives very little space to interpret unseen data. Using dropout, a portion of random nodes

will be deactivated at each turn, which forces a sparse representation of node’s learning

and at the same time forces some other nodes to take on more responsibilities (to correct

other nodes’ losses). This algorithm creates a more robust model when it comes to unseen

data, which is the entire point of machine learning.

4.4 Optimizer

When a sample finishes propagating through the network and produces a prediction

ŷ, the optimizer calculates the loss L and uses L to optimise learning (reduce loss) by

updating the weight using a specific algorithm.

Gradient Descent is the very basic but most popular algorithm for optimisation. By taking

the derivative of the loss function, the algorithm finds the direction towards the minimum

point and updates the weight towards that point. An important hyper-parameter of

Gradient Descent is learning rate η, which determines how much the weight would change.

A small η may require a lot of computation while a larger one may make the algorithm

completely miss the optimal point. Gradient Descent only updates weights after a whole

data set has been fed to the model (1 epoch). As a result, if the data set is too large,

calculating the gradient of the whole data set will take a long time and the algorithm

may never converge. Furthermore, because the gradient is calculated only once per epoch

on the whole data set. To solve the problems of Gradient Descent, a new variant called

Mini-Batch Gradient Descent is developed in which the weights are updated after every

batch. With all Gradient Descent variants, there are common challenges which include

getting trapped at local minima (gradient at local minima is still 0, thus not updating

the weight), and having constant learning rate η.

Root Mean Squared Propagation (RMSProp) is a Gradient Descent based optimisation
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algorithm that provides solutions to the Gradient Descent variants’ problems. RMSProp

uses adaptive learning rate through moving average. As the value of moving average

increases, the learning rate becomes smaller which allows the algorithm to converge.

The algorithm is described in Equation 4.4, where E[g2] is the moving average of

the squared gradient, η is the learning rate, and γ is the moving average parameter,

or discounting factor for the history/coming gradient. The current moving average

is calculated based on a fraction of previous moving average of squared gradients

and the remaining fraction of the current gradient. Hinton, the author of this opti-

mizer algorithm suggests that the optimal value for γ and η are 0.9 and 0.001, respectively.

g =
1

m

m∑
1

L(ŷ, y)

E[g2]t = γE[g2]t−1 + (1− γ)g2t

wij(t) = wij(t− 1)− η√
E[g2] + ϵ

gt

(4.4)

RMSProp is a suitable optimizer for the proposed neural network as it uses LSTM, which

is considered more complex compared to a regular Dense layer because of its architecture.

The complexity of the proposed neural network makes it susceptible to counter the

exploding or vanishing gradient problem. Those problems often arise when using a fixed

learning rate because each weight may require different learning rates because they have

different weights. RMSProp solves the problem by adjusting the learning rate using the

previous moving average of the squared gradient.

Overall, the preliminary neural network design is very simple. The reason is that within

the data, there a large amount of 0 values, which the model will eventually learn that it is

just padding. Thus, the data may not be sufficient to be used in a complex architecture

so the training and evaluation will start with a preliminary, simple design, and move on

to another more complex one if needed.
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Chapter 5

Data Processing

5.1 Overview of Data Set

The data used for this research is “Inpatient-based study examining prognostic factors

during the febrile phase”, a project of OUCRU where effort is made in using big data and

machine intelligence to control Dengue. Patients from 5-15 years old admitted to Dengue

ward at Ho Chi Minh Hospital for Tropical Diseases were recruited for the data collection.

There are a total of 2,615 participants with confirmed Dengue in the completed data set.

Dengue is confirmed by a reverse transcriptase-polymerase chain reaction (RT-PCR) test

or IgM & IgG test.

Patients that were diagnosed to may have Severe Dengue were transferred to the

Paediatric Intensive Care Unit (PICU) and further be examined and monitored for the

study. Because patients are recruited since the febrile phase, a lot of Severe Dengue

patients presented in this data set come with weeks worth of data. This makes the

data set very informative and promising to use for the training of Severe Dengue Predictor.
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5.2 Feature Selection

The data set from OUCRU originally has 70 clinical features, to begin with. However,

after inspection at the number of NaN values, a few features have been deemed poorly

recorded amongst patients. The inclusion of such features may bring outliers to the data.

Thus, 18 poorly-recorded features were permanently excluded from this project.

Correlation between features and outcomes has been calculated using Pearson’s coefficient.

Pearson coefficient is able to sufficiently calculate the correlation between dichotomous

(binary) variables. However, depends on the data, the result may not be as informative

as those of other coefficients, such as the Phi coefficient, Carmer’s V, Tschuprow’s T,

Contingency coefficient C, which all uses Chi-squared statistic, a popular approach for

dichotomous variables. Figure 5.1 shows the correlation using Pearson’s coefficient, which

will be used as a reference for feature selection.

From Chapter 3, it was observed that using variables related to the warning signs

may have positive effects on the performance of models. As a result, the training data

will include mostly variables chosen from WHO’s guidelines. According to 2009 WHO

guidelines [21], Dengue warning signs consist of abdominal pain, persistent vomiting,

clinical fluid accumulation, mucosal bleeding, lethargy or restlessness, liver enlargement,

and behavior over time of haematocrit ratio, and platelet count. Some of the warning

signs are available in the data set even after the purge of poorly-recorded features, such

as abdominal pain, vomiting, mucosal bleeding, haematocrit ratio and platelet count.

On the other hand, the restlessness feature was very poorly recorded and could not be

included in the model. Furthermore, the data set does not lend itself to look at clinical

fluid accumulation easily. However, Deborah HL Ng et al. [22] have suggested that there

is an association between clinical fluid accumulation and saddleback fever. Moreover,

prolonged fever may be associated with Severe Dengue, according to [22]. As a result,

body temperature feature was included in the feature group despite not having a high

correlation with Severe Dengue outcome when looking at Figure 5.1. Another potential
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feature to look at is respiratory rate. According to WHO 2021 information on Dengue [5],

rapid breathing is also a warning sign of Severe Dengue.

When looking at Figure 5.1, some of the aforementioned warning signs have an adequate

correlation with Severe Dengue outcomes aside from respiratory_rate (respiratory_rate,

platelet count (plt). This may be the result of the clinical features being dependent on

each other when diagnosing Dengue outcomes. For example, as stated by WHO [5], one

of the warning signs includes the increase of haematocrit ratio concurrent with a rapid

decrease in platelet count. Since bleeding_vaginal presents quite a noticeable correlation

with sd_bleeding, it is also included in the model.
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Figure 5.1: Correlation of Features and Outcomes
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5.3 Data Imputation

OUCRU data set contains a lot of missing or NaN values. It is reasonable to expect NaN

values more often in clinical data set than regular data set, since a lot of comprehensive

tests on patients are not done on a daily basis for cost and efficiency purposes. As the

amount of NaN values is high, using average values data imputation will not work well.

According to François Chollet [23], replacing NaN values with 0 should not affect the

neural network’s performance in the condition that 0 is not a meaningful value. Amongst

all the numeric clinical data in the chosen features, there is not any that uses 0 to

represent meaningful data. For binary features, NaN or False usually both mean that

there was not any noticeable patient’s reaction that could have been observed. For

example, the vomiting feature with False annotation means that the patient did not

vomit. And it is reasonable to assume that with NaN values in Vomiting, there was also

no vomiting observed from the patient.

As a result, all missing values are imputed with 0 for this project. This also simulates the

reality that not all tests are done daily and in fact, some tests are only done when the

doctor decide that they are necessary

5.4 Data Formatting

The proposed model for this project is LSTM, which requires a more specific shape of

data when feeding into the model for training than the usual model. The shape requires

by LSTM is (time_step, feature), as shown in Figure 5.2. time_step represents the

length of a sequence (or a sample). And feature tells the number of features included

in a sequence. In this particular project, time_step means the number of days with a

patient’s clinical data to be used for training and prediction. As a result, time_step

varies between patients and also depends on the number of days to be predicting ahead
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of.

Figure 5.2: Overall Visualisation of LSTM Data Shape

Figure 5.3 shows a more in-depth visualisation of the formatted input and the associate

outcome. The main goal of Severe Dengue Predictor is to determine if a patient will

develop Severe Dengue in the next N day(s). Any patient with original time_step less

than N will be discarded entirely. While other sequence/patient will have N last rows

of data taken away. For example, if patient 2405 originally have 4 days worth of data

(original time_step of 4), and needs to be formatted appropriately to train a 2-day-ahead

predictor, the last 2 days (or rows) of data will be discarded. And the outcome of this

sequence depends on if patient 2405 developed Severe Dengue on day 4 or not. Thus,

we will use clinical data up to day 2 to predict the outcome at day 4, for a 2-day-ahead

predictor.

It is inevitable that there will be different time_step within the data set, just as each

patient would have been hospitalised different lengths of time, and had their clinical

record done at different levels. Because the data shape at the first layer is (time_step,

feature), it requires the same (time_step, feature) in one batch, which would

therefore require having multiple set of inputs with different time_step. One way to

avoid that is to find the longest time_step and pad shorter samples with 0 value across
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Figure 5.3: Visualisation of LSTM Data Shape and Its Output for 1-Day-Ahead Pre-
diction

all features. Padding is a common practice when using any type of RNNs network and/or

time series data to work around sequences with variable lengths, such as text sequences.

Overall, the algorithm to format data appropriate for LSTM can be summarised as follow:

1. Select features from the entire data set

2. Join data and outcome: for each patient,

• if he/she did not develop Severe Dengue:

(a) Join all the rows of his/her data except for the last day

(b) Record the outcome as negative for the current patient

• if he/she developed Severe Dengue:

(a) Join the rows of his/her data until 1 row before the Severe Dengue outcome

is confirmed

(b) Record the outcome as positive for the current patient

3. Step-ahead format: for each patient,

• If time-step is equal to 1, skip the step-ahead format
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• If data length of the current patient is less than time-step (does not have suf-

ficient data to perform prediction X-step-ahead), delete the patient’s data en-

tirely

• If data length (rows of data) of the current patient is greater than time-step,

drop the X − 1 last rows of current patient’s data

4. Remove patients that contain only 0 or NaN in their features

5. Decide on a common data length

• If current patient’s data length is less than common data length, pad with rows

of 0 to achieve common data length

• If current patient’s data length is more than common data length, delete the

patient’s data entirely

5.5 Further Preprocessing and Evaluation Procedures

The data set has been cleaned up previously by OUCRU so it does not need a lot of

preprocessing except standardisation. A RobustScaler by Scitkit-learn was used for

standardisation. RobustScaler standardises data by using the 1st and 3rd quartile.

Median and interquartile ranges from the training data can be stored and used on testing

data or individual samples when deploying the model.

For performance evaluation of the model, the K-fold cross-validation technique is used,

where the procedure is as follow:

1. Shuffle the entire data set

2. Split the data set into K groups

3. Rotate between the K groups :

(a) Take 1 group for the testing set
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Figure 5.4: K-Fold Cross-Validation Visualisation

(b) Take the remaining (K − 1) group for the training set

(c) Fit and train the model on the training set

(d) Evaluate testing set

(e) Retain the evaluation score and discard the model

4. Summarize the performance by finding the average evaluation scores of all iterations

Specifically, the evaluation is done on 5-fold cross-validation, which means a standard 20%

of the data set is used for evaluation. The reason why K-fold cross-validation is popular

for model evaluation is because it ensures that every data has a chance to appear in the

training and testing process, which gives a less biased result overall.
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5.6 Data Visualisation

5.6.1 Outcome Distribution

Even though the study recruited a large number of patients, and a decent number of

patients turned out to develop Severe Dengue, there is no trace of 2 out of 4 Severe

Dengue outcome as shown in Figure 5.5, severe leakage and severe bleeding. Upon

inspection, it was discovered that 1 patient was recorded with severe leakage outcome.

Unfortunately, according to the data, the patient seems to have already had developed

severe leakage prior to admission. Similarly, there were 2 patients admitted to the

study already having severe leakage condition. Thus, for these patients, after the data

went through the formatting phase, there was no trace of those 2 Severe Dengue outcomes.

Initially, the binary distribution started out on the more positive side. At 1-step-ahead

format, 59% of the sample is positive. However, as the format changes to 2-step-ahead,

the positive data decreases to 54%. It means that from in the initial format, 1-step-ahead

format, there were some patients that have only 1 row/day worth of data to process. As

a result, when moving to the 2-step-ahead format, having to drop another 1 row, those

patients no longer exist in the data set, which reduces the number of positive samples,

and its distribution. The same thing happens over and over again as the step-ahead

format increases. At 9-step-ahead format, the entire sd_shock outcome is no longer

available, and the distribution has become more negative, with only 24% positive sample.

With this observation from outcome distribution, it is expected that as the step-ahead

format increases, the performance of the respective predictor will decrease due to shortage

of training data.
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Figure 5.5: Outcome Distribution of Different Data Format

5.6.2 Missing Value Distribution

Figure 5.6 shows the distribution of missing/0 values in the data set. For this visualisation,

strictly only numeric variables were used since binary variables contain 0 value that is

meaningful. It can be observed that the amount of missing data is quite considerable.

Since the sequences of data are checked for all 0 values (which will be entirely dropped

because it carries no useful information), the number of 0 values show in Figure 5.6

scatter between the nonzero values throughout the entire data set. Because of this, the
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Figure 5.6: Distribution of Missing Values in Numeric Data

time series nature of data could be slightly disrupted. However, with the first predictors

that have more than 15,000 non-zero data points to train on, there is ground to believe

that the LSTM algorithms may be able to pick up the dependency between features and

through times.
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Chapter 6

Neural Network Architecture &

Hyperparameter

6.1 Neural Network Architecture

Figure 6.1: Neural Network Architecture

Figure 6.1 visualises the architecture of the overall neural network used to train the Severe

Dengue Predictor. The network consists of a stateless LSTM followed by several Dense

layers. The stateful LSTM is used when the entire data set is all related or dependent

on each other in a timing manner. In that case, the final output of the previous batch

will be carried to the next batch. In this project, there is no timing dependency between

samples of data, or between patients. As a result, stateless LSTM is used.

A LSTM layer consists of multiple LSTM cells, which was introduced in Section 4.2. The
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amount of LSTM cells depends on the time_step of the sample going through the layer.

Each LSTM cell has a predefined number of units, num_units, which will determine

the dimension of LSTM layer output. The unit of each LSTM cell can be thought as

memory unit intuitively. A small num_units will not give LSTM enough memory space

to store all the learnings from the sample. On the other hand, a larger num_units will be

computationally expensive. To decide num_units, it is useful to look at the amount of

data available for a starting point and do a few trials to pick out an optimal value, which

is usually between 16− 256

6.2 Hyperparameter Tuning

6.2.1 Epoch

Figure 6.2: Training and Validating Progression

Epoch is the number of times the entire training data set is fed into the network. It is

essential that the number of epoch is big enough for the network to learn and optimise

its weights. However, it is also essential to reduce unnecessary computational expenses.

As such, it is important to determine the appropriate number of epoch, which can be

done through evaluating the progression of the model’s loss with respect to epoch.
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Figure 6.2 shows the loss of a sample training data set going through the proposed LSTM

network. The validation loss reaches its minimum loss at 200 epochs, then starts to plateau

until roughly 350 epochs, and finally starts to increases up until 500 epochs. This proves

that with unnecessarily large number of epoch, not only it would be computationally

expensive to train the model, the model is also more prone to overfitting. From the

observation, 200 epochs will be used to train the models.

6.2.2 LSTM Unit

Figure 6.3: Performance Comparison of Models with Different LSTM Cell Units

Since the proposed neural network is fairly simple, with only 1 layer of LSTM and 1

layer of output Dense layer, the complexity should be focused inside of the LSTM. As

mentioned previously, the usual value ranges between 16 − 256. For architecture with

parallel LSTM layers, it is not necessary to have a lot of units inside each LSTM layers

because the number of LSTM layers will contribute greatly to the neural network’s

complexity. However, with a simple model proposed in Figure 6.1, we will look at using

more units to help the learning ability of the model.
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From Figure 6.3, we can see that the resulted losses between the two models are not very

different. At the end of the 200 epochs, it is barely noticeable. Furthermore, it 256 units

is more computationally expensive than 128, with 9 and 6 minutes fitting the model in

Keras, respectively. As a result, 128 units will be considered for the LSTM layer.

6.2.3 Learning Rate

Learning rate η is also known as the step size moving towards the optimal point. Learning

rate is important when optimizing the model and its loss. A too small step size can be

computationally expensive to reach the optimal point. Meanwhile, a big step size may

lead to the algorithm completely pass over and miss the optimal point.

Figure 6.4: Training and Validating Progression for Different Learning Rate

Figure 6.5 shows the comparison between two different learning rates, 0.0001 (recom-

mended by the founder of RMSProp optimizer) and 0.001. Since 0.0001 is quite a slow

learning rate, it will be compared against a faster one to determine if it can help getting

to the optimal point faster.

Unfortunately, the faster learning rate did not work out very great. Initially, validation

loss of η = 0.001 converged much faster than that of η = 0.0001. However, after a few more
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epochs, the algorithm completely missed the optimal point and overshot its loss without

the ability to bounce back anytime soon. As a result, it is better to stay safe with the

recommended learning rate to avoid overshooting.

6.2.4 Dropout

For dropout, values between 0.2-0.8 are tested to find out the optimal value. It is observed

that for the largest dropout rate, 0.8, both training and validation losses are the highest.

It means that for a dropout rate of 0.8, too many nodes were being disabled and the model

cannot function properly. Dropout of rate 0.6 also has the lower performance. Between

the dropout rate of 0.2 and 0.4, there is minimal difference. However, it seems that a

dropout rate of 0.4 produced a model that’s less overfitting than 0.6. As a result, dropout

rate of 0.4 will be used for the architecture. This result shows that the model does not

have a big overfitting problem, and only needs a minimal amount of regularisation to help

improve itself.

Figure 6.5: Training and Validating Progression for Different Dropout Rate



58 Chapter 6



59

Chapter 7

Preliminary Results

7.1 Dynamic Severe Dengue Predictors

There are 9 predictors being developed and tested in this project, with increasing steps.

The reason why it’s called “step” instead of “day” is because when inspecting the data,

the day_from_onset which indicates the time of record shows that not all records for

patients are made daily. In reality, it is reasonable to expect that “step” and “day” are

similar in this case.

Accuracy Precision Sensitivity Specificity PPV NPV
1-step-ahead 95± 2 96± 2 96± 4 94± 3 95± 3 95± 6
2-step-ahead 95± 1 93± 2 98± 2 92± 3 91± 2 98± 2
3-step-ahead 89± 3 86± 6 92± 4 90± 4 85± 6 92± 3
4-step-ahead 86± 3 84± 3 84± 5 87± 3 81± 4 86± 4
5-step-ahead 86± 2 82± 4 85± 5 87± 5 80± 5 88± 3
6-step-ahead 85± 2 81± 4 82± 4 86± 3 78± 6 86± 3
7-step-ahead 79± 4 72± 6 73± 12 82± 4 70± 5 82± 6
8-step-ahead 83± 2 75± 3 75± 9 82± 5 65± 8 84± 9
9-step-ahead 85± 2 83± 5 53± 12 89± 1 77± 9 86± 3

Table 7.1: Performance of 9 Dynamic Severe Dengue Predictor using Maximum Data
Length

Initially, the predictors are formatted to use the maximum data length amongst the

entire data set as the common data length. This means that none of the patients will get
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deleted which will lead to data loss. Since the outcome distribution of the data is lacking

which is thought to be ideal to use the format that would preserve the largest amount of

data possible.

Table 7.1 shows that the longer step-ahead predictors have steadily decreasing perfor-

mance, especially sensitivity metric, compared to the previous ones. The reason for

the decreasing performance can be explained by the data set size. As the step-ahead

increases, the number of rows of data getting trimmed increases. And eventually there

would be patients that do not have enough rows of data to contribute to the predictor.

Unfortunately, a lot of the data getting cut out happen to be positive samples. The

entire data set started out on the more positive side, where at 1-step-ahead format, the

number of positive samples is 43% more than the negative samples. However, as the data

gets dropped, the data become more on the negative side, with the number of negative

samples becomes 3 times as many as the positive samples at 9-step-ahead format. This

outcome distribution explains why the sensitivity metric decreases its performance faster

than any other metric. Table 7.2 also shows the amount of data decreasing between each

predictor. From 1 to 9-step-ahead predictor, more than 65% percent of the samples have

been dropped because of inadequate rows of data.

Step-ahead Predictor 1 2 3 4 5 6 7 8 9
Total Data Set Size 1330 1097 998 948 911 875 765 642 455
Positive Data Size 782 549 451 404 370 353 291 212 112
Negative Data Size 548 548 547 544 540 522 474 430 343

Table 7.2: Data Set Size Used to Train Each Predictor

Overall, all predictors have adequately high specificity and slightly lower sensitivity.

This is to be expected because there is always a trade-off between sensitivity and

specificity. This problem is also partially because of the distribution of positive/negative

sample distribution as shown in Table 7.2. As the step-ahead increases, the amount

of data decreases. However, overall, the amount of negative sample does not change

as drastically as with positive sample, which explains why the predictors’ ability
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to correctly identify a true negative sample is adequately high (demonstrates by

specificity metric). Meanwhile, since the positive sample is seriously lacking as the

step-ahead increases, the predictor’s ability to correctly identify true positive sample

depreciates quickly, to only equal to a random guess at 9-step-ahead, with 53% sensitivity.

PPV and NPV performance of predictors are also on the adequately high side. One of

the aims when developing Severe Dengue Predictors is clinical management which helps

prioritise the more vulnerable patients and relieve burdens on the hospital system during

a mass outbreak. The positive predictive value (PPV) shows the confidence that if a

patient is tested positive with Severe Dengue Predictor, there is up to 92% he/she will

develop Severe Dengue. This ensures a high probability that patients are not wasting

time in hospitalisation when getting waiting for symptoms, as well as hospitals not

wasting too many resources on hospitalising patients with mild progression. Furthermore,

with comparatively high negative predictive value (NPV), up to 98% of patients getting

negative prediction stays safe and does not progress to Severe Dengue.

With the overall performance of all predictors, it is sufficient to say that the warning

signs and some highly correlated features carry enough information to adequately train

the predictors with simple architecture.

7.2 Sensitivity Analysis

Sensitivity analysis is a technique used to determine if the data set is sufficient to estimate

the performance and generalisation power of a model and devise a future plan for the

project to further improve.

Figure 7.1 shows that the sensitivity analysis result for each predictor varies differently,

which is expected since the numbers of data available for each predictor also vary greatly.

From observation, 1-step-ahead predictor variance is very low, which means that the
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Figure 7.1: Effect of Data Set Size on Predictors’ Performance and Variance

amount of training data is sufficient to estimate the performance of this predictor in

the real world. The same can be said for 2 and 3-step-ahead predictors. However, for the

remaining ones, such as 4, 5, 6, 7, and 8-step-ahead predictors, there are still noticeable

variances in the performance which indicates that the model will benefit greatly from hav-

ing a larger data set. Meanwhile, the 9-step-ahead predictor desperately needs more data,

which was also heavily emphasised in Section 5.6.1.

7.3 Improving Preliminary Model

Since the further step-ahead models were performing badly because of imbalanced data,

a way that may improve the performance is to assign different weights to the labels.

Assigning weight will affect the loss equation as follow:
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class_weight(ŷ(t), y(t)) =


I(ŷ(t) ̸= y(t)) = α if y(t) = 1

I( ˆy(t) ̸= y(t)) = 1 if y(t) = 0

L(ŷ, y) =
T∑
1

[
class_weight(ŷ(t), y(t)) ∗BCE(ŷ(t), y(t))

] (7.1)

Where α is the weight assigned to positive class, and the weight for negative class remains

at 1. Since the positive sample is lacking in numbers compared to the negative sample,

assigning α > 1 will essentially tell the loss function and optimizer that a positive sample

is α times more important than a negative sample. When a positive sample is classified

wrong, the predictor will be “punished” more than when a negative sample is classified

wrong.

Accuracy Precision Sensitivity Specificity PPV NPV
3-step-ahead 90± 2 85± 5 96± 2 89± 4 84± 6 95± 2
4-step-ahead 88± 3 85± 4 87± 3 87± 4 82± 4 88± 4
5-step-ahead 87± 3 81± 5 91± 6 85± 6 78± 7 91± 4
6-step-ahead 85± 1 79± 5 87± 6 85± 5 77± 6 89± 3
7-step-ahead 80± 3 70± 4 84± 6 79± 3 67± 4 87± 5
8-step-ahead 81± 2 69± 5 82± 7 83± 3 62± 11 90± 3
9-step-ahead 86± 5 73± 14 75± 10 86± 5 67± 15 92± 3

Table 7.3: Performance of Predictors when Training with α = 1.5

Table 7.3 shows the performance of predictors with imbalanced training data when

trained with weight α = 1.5 for positive class. When comparing with Table 7.1 where

the predictors have been trained without weight, the sensitivity metric has improved a

noticeable amount, especially with the 9-step-ahead model. However, the standard devia-

tion between each iteration in K-fold cross-validation is also quite large. In Table 7.3, the

specificity and PPV metric has been decreased quite a significant amount, especially in

PPV. This means that the number of false positive prediction has gone up considerably.

However, the performance of NPV has increased. With the new performance, the

predictors still have power to aid clinical management in ensuring that patients tested

negative via Severe Dengue Predictor will have at least 87% chance of not developing
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Severe Dengue, thus allowing them to feel safe when getting treatment at home and not

taking up or spending on unnecessary hospitalisation. However, with quite low PPV, the

rate of unnecessary hospitalisation after the 5-step-ahead prediction is still considerable.
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Model Deployment

To assist clinical trial of the machine learning models, all predictors were deployed

using Flask web service. Since it is a very first deployment, and the nature of hospital’s

available database service is unavailable, the application is designed to take clinical inputs

from clinicians and return predictive results over the next 9 days.

Figure 8.1: Model Deployment UI



66 Chapter 8

8.1 Application Development

Tensorflow and Keras API allow downloading the trained neural network model in the h5

format. When downloading, the file contains constructed architecture, weight values, and

compile() information such as optimizer, learning rate, batch size, number of epochs,

and other evaluation metrics.

For this project, the processing pipeline consists of formatting data and standardisation

using RobustScaler. The scaler is previously fitted with training data and when

downloaded as pkl format, it contains interquartile ranges and mean value of the training

data. The input data provided by the user will be standardised based on this information.

With the processing pipeline and trained neural network available, a straightforward al-

gorithm can be implemented for the application as shown in Figure 8.4.

Figure 8.2: Model Deployment Algorithm

8.2 Application Design

The design of application is simple and straight to the point, with forms to fill out clinical

data of 1 patient. Each row represents 1 day worth of clinical data. If the data is not

available for that day i.e., some tests were not carried out that day, then the value can be

0. For multiple-day data, an Add Row button can be used to expand the form and enter

multiple-day data. Figure 8.3 shows an example of data being input into the application.

These 2 days’ worth of data were taken from patient 1888 who has eventually developed

severe organ impairment after 10 days worth of record. The full data of patient 1888 can
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Figure 8.3: Application Input Page Design

be found in Appendix B.

Figure 8.4: Application Output Page Design

After the patient’s data has been filled correctly, by clicking the Predict button, the

algorithm will start collecting inputs and entering the loop to obtain prediction results

over the next 9 steps (days) ahead. The result page consists of 2 important parts: the

warning text and the chart showing the chances of developing Severe Dengue over the

next few steps/days. The warning text works based on a decision threshold of 50%.

Thus, any result greater than 50% will be marked as having a high chance of developing

Severe Dengue. By providing a chart with more specific result from predictor, it will help

clinicians who have gained experience from using the predictors to enhance their diagnosis.
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8.3 Application Simulation

8.3.1 Positive Sample Simulation

(a) Patient 1888 - 1 Day Data (b) Patient 1888 - 2 Days Data

(c) Patient 602 - 1 Days Data (d) Patient 602 - 2 Days Data

Figure 8.5: Simulation on Positive Samples

Figure 8.5 shows the results when simulating up to 2 days’ worth of patients’ data to the

application. The 2 samples used in this simulation is from patient 1888, who developed

Severe Dengue after 6-7 steps (days) subsequently. From the simulation of 1 day’s

worth of data, it seems very promising since the predictors gives very high probability of

developing Severe Dengue up to 7-step-ahead predictor. This signals that the predictors

are very sensitive to positive samples. In Figure 8.5b, the application again shows very

promising results when after the 6th predictor, the probability of patient developing

Dengue starts to decrease quite noticeably.
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Another sample shown in this simulation is of patient 602, who subsequently developed

Severe Dengue 1-2 days after these data were recorded. For only one data as shown in

Figure 8.5c, the predictors were able to narrow down roughly the date that the patient

would develop Severe Dengue (2 days after, in this case). Similarly, Figure 8.5d correctly

shows that patient 602 would develop Severe Dengue the day after.

From these simulations, we observed a highly accurate and precise application that were

able to identify if the patient will develop Severe Dengue, and roughly narrow down the

day that Severe Dengue will happen. As more data is fed into the predictors, the accuracy

increases.

8.3.2 Negative Sample Simulation

(a) Patient 920 - 1 Day Data (b) Patient 920 - 2 Days Data

(c) Patient 934 - 1 Days Data (d) Patient 934 - 2 Days Data

Figure 8.6: Simulation on Negative Samples
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Figure 8.6 shows the result of 2 steps’ (days) worth of data from 2 different patients who

did not develop Severe Dengue. Patient 920 results shows that as more data are fed into

the models, it accuracy becomes better. With this trajectory, in just 3 steps (days) since

onset, the patients can be confident that they would not develop Severe Dengue.

However, for patient 934 shown in Figure 8.6c & d, the predictors were getting very

confused. They were adamant that the patient would definitely go on to develop Severe

Dengue when in fact, he or she won’t.

This simulation shows that for negative samples, some of the data will not work. This is

also shown in the performance table of predictors in Figure 7.1 where it shows the PPV

metric is lacking compared to that of NPV metric. Meaning that the chances of patients

getting a false positive is greater than getting a false negative.
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Updated Results

9.1 Alternative Data Formatting

Accuracy Precision Sensitivity Specificity PPV NPV
1-step-ahead 95± 1 97± 1 97± 1 79± 10 97± 2 80± 5
2-step-ahead 94± 1 95± 1 97± 2 85± 4 95± 1 94± 4
3-step-ahead 93± 3 93± 4 97± 2 84± 8 92± 4 93± 4
4-step-ahead 92± 3 91± 2 97± 2 85± 7 90± 2 93± 5
5-step-ahead 91± 2 88± 3 99± 1 83± 6 86± 3 98± 2
6-step-ahead 89± 2 83± 3 97± 2 82± 4 85± 3 96± 3
7-step-ahead 85± 4 81± 3 88± 6 78± 4 81± 4 88± 5
8-step-ahead 83± 5 70± 9 67± 13 87± 1 66± 16 88± 4
9-step-ahead 81± 3 36± 37 15± 15 88± 3 26± 22 83± 3

Table 9.1: Performance of Predictors when Training with Median Data Length

From the simulation in the previous chapter, it is thought that because the maximum-

data-length format is used when training models, the models were having problems in

simulation when receiving little amount of data than normal, which is more common

in real life than receiving 10 steps’ (days) worth of data. It is unreasonable because

because on average, Severe Dengue occurs 3-7 days after illness onset, which is why in

the simulation, only up to 2 steps (days) worth of data is fed into the application. With

that observation, the common data length of training data is changed to median instead

of maximum data length. This will create truer scenarios to real life (though not perfect)

where only a very limited number of data is input into the application for efficiency.
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Table 9.1 shows the performance of models trained with median-data-length format.

Compared to the original model in Table 7.1, mostly all the metrics indicate that the

performance of predictors have increased, even when the amount of training data has

decreased, as shown in Table 9.2. The progress of data distribution is similar to that

of maximum-data-length format. However, in Table 9.1 at 1-step-ahead format, median

data length has a more skewed positive distribution than that of maximum-data-length,

which explains why the specificity and its standard deviation were low initially.

Step-ahead Predictor 1 2 3 4 5 6 7 8 9
Total Data Set Size 822 589 623 573 536 546 394 369 237
Positive Data Size 663 430 398 351 318 268 190 102 42
Negative Data Size 159 159 225 222 218 278 204 267 195

Table 9.2: Data Set Size Used to Train Each Predictor with Median-Data-Length
Format

Overall, the label distribution of median-data-length format is slightly less skewed than

that of maximum-data-length. However, from 8-step-ahead format, the data was seriously

lacking since some of the data has initially been dropped when formatting median-data-

length, then a considerable amount has also been deleted when formatting data as 8-step-

ahead. The skewed distribution and lack of data explain why the performance of these

two predictors (8 and 9) is especially worse than that of maximum-data-length format.

9.2 Further Simulation

With the updated model, the simulation in Section 8.3.2 is repeated to see if there is

any performance progress in simulation. Patient 920 who has previously been adequately

identified as negative, has been given better result this time using predictors trained on

median-data-length data format. From only data of the first day, the predictors have all

correctly identified that patient 920 would not develop Severe Dengue.
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(a) Patient 920 - 1 Day Data (b) Patient 920 - 2 Days Data

(c) Patient 934 - 1 Days Data (d) Patient 934 - 2 Days Data

Figure 9.1: Further Simulation on Previous Negative Samples using Median Data
Length

Unfortunately, the simulation of patient 934 did not progress any better. However, when

continue simulating other negative sample, a considerable increase in performance can be

observed in some cases where the data is not “extreme”. Figure 9.2 shows that for the

same amount of data input to the applications, the median-data-length trained predictors

outperformed the previous predictors. With only 2 days worth of data, which consists

of almost 30% missing values, the later predictors were able to produce highly accurate

predictions.

From the updated simulation result of patient 920, 934, and 641, it can be safely said

that the changing from maximum data length to medium data length has increased the

performance of predictors, even in simulation. However, there are blind spots which will

trigger the predictors to associate those spots with positive label most of the times. This
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(a) Maximum Data Length - 1 Day
Data

(b) Maximum Data Length- 2 Days
Data

(c) Median Data Length - 1 Days Data (d) Median Data Length - 2 Days Data

Figure 9.2: Performance Difference between Median and Maximum Data Length on
Negative Sample of Patient 641

problem could have been arisen because there are not enough data to expand LSTM’s

hypotheses.

Figure 9.3 shows the results of simulating positive samples on models trained with

median-data-length format. Unfortunately, for these 2 samples, there were not any

noticeable increase in performance. Predictive result for patient 1888 did not change

drastically. On the other hand, results for patient 602 are both wrong this time, even

though it was correctly predicted when using models trained with maximum-data-length

format. The reduction in performance is consistent with the decrease in NPV metric of 1

and 2-step-ahead predictors when trained on median-data-length.
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(a) Patient 1888 - 1 Day Data (b) Patient 1888 - 2 Days Data

(c) Patient 602 - 1 Days Data (d) Patient 602 - 2 Days Data

Figure 9.3: Further Simulation on Positive Samples using Median Data Length

Behind the scene, multiple random simulations have been performed. The results of those

simulations suggest that the NPV rate may be higher than PPV in real life. And even

though the simulation of patient 602 in Figure 8.5 suggests that the machine learning

application may be able to narrow down the rough date that Severe Dengue would develop,

other simulations suggest that it is only a rare occurrence. The majority of correctly

predicted results on positive samples look like Figure 9.3a and b where all almost all

predictors show high chance of patient developing Severe Dengue.
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Discussion

The performance of LSTM-based architecture on different types of data proves that

the concept of using clinical data on a recurrent neural network based architecture is

feasible. The network was able to perform fairly well on adequate training data size,

with remarkably high sensitivity, specificity, PPV and NPV metrics. The performance is

quite surprising since the training data set has at most 50% missing values without any

data interpolation. LSTM has been able to identify the dependencies between variables,

through times, and create different hypotheses for different dependencies.

10.1 Data Set

Since Severe Dengue can occur 3-7 days after illness onset, it is important that we have

at least a 7-step-ahead predictor working with adequate performance to aid the clinical

management during outbreak. However, one of the biggest obstacles is the lack of data,

either through each data point (missing values) or through each patient/participant. Fur-

thermore, data imbalance is also a huge problem proven when looking at the predictors’

performance. It does not help since predicting further step-ahead will undoubtedly be

more complicated than 1-step-ahead. As a result, having more data points, and more

patients that can present different trajectories for the development of Severe Dengue
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through several days will be very important. Now that a small clinical feature set that

has great impact on predicting Severe Dengue has been identified, it may reduce the

amount of tests clinicians would have to collect for the data set study.

A method that has been trialed in this project to potentially solve the problem of

imbalanced data set is assigning weights to labels. While the sensitivity of predictors

increases, the PPV metric unfortunately decreases. This means that there will be a

trade-off when using this method. For the purpose of clinical management, a high PPV

and NPV will more preferable compared to sensitivity and specificity.

Another limitation of the data set used in this project aside from lack of data, is that it

includes only Vietnamese children between ages 5-15. This will undoubtedly hinder the

generalisation power of predictors as other race and age range can experience Dengue

progression on different levels.

10.2 Performance Comparison

Compared to DARE & DART calculators covered in Section 3.2, Severe Dengue Predictors

has greatly improved the specificity and PPV metrics, while still keeping the sensitivity

and NPV metrics at an adequate level. This is very important, especially when taking

into account the use of Severe Dengue Predictors in healthcare settings. The main aim

when developing the predictors is to not only help doctors in diagnosis, but also helping

patients relieve the panic that they may potentially develop Severe Dengue and the best

thing for them to do is to get hospitalised immediately.

Compared to the Early Severe Dengue Identifier (ESDI) covered in Section 3.3, Severe

Dengue Predictors are trained on a more complex model, using more relevant features

chosen according to WHO Dengue guidelines. Because of that, the performance of Severe
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Dengue Predictors is slightly better. However, it is hard to quantify the difference in

performance of both models because ESDI predicts the chances Severe Dengue will

develop in an infinite future, while Severe Dengue Predictor predicts certain steps (days)

ahead.

Through random simulations, it is verified that the application also has great potential

to be used in real life to help diagnosing Severe Dengue, even when using only a few

days’ worth of data (1-3 days) in the application. In rare cases, the application shows

the ability to correctly narrow down the date that patient may develop Severe Dengue.

However, most of the correctly predicted result for positive samples usually shows high

chances of developing Severe Dengue from day 1-7.

After performing simulation, it is observed that in multiple instances, the application has

completely diverged from the true label. When re-training models using median-data-

length format, the problem was relieved in some instances. However, in some extreme

examples, it did not get any better. This led to a possible assumption that the data set

failed to create enough scenarios for the models to build and expand their hypotheses on.

Thus, when presented with the extreme examples, the predictors use their incompletely

trained hypothesis to produce results which may turn out to be very far from the ground

truth. Through those simulations, it is suggested that the application has greater NPV

rate than that of PPV.

10.3 Future Work

For future work, a model trained on imputed data set would be a good starting point.

Throughout this project, models were trained with missing values and still show promising

result. It is anticipated that when using data imputed with proper interpolation tech-

nique, the results will increase significantly, especially on further step-ahead predictors
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such as 8 and 9-step-ahead, since currently they are having a serious problem of lacking

data.

Other data formats which promote real-life scenario such that user usually only inputs a

few days’ worth of data into the model instead of 10 days, should also be explored. While

the performance of predictors seem good from K-fold cross-validation, it is when doing

simulation that some limitations of application in real-life scenario were noticed.

Furthermore, instead of binary classification, a regression model that predicts the day

Severe Dengue is worth looking into. In this project, the regression model was attempted.

However, date features were either missing a lot of data points or incomprehensibly

recorded, which hinder the feasibility of developing and training the regression model.

An improvement that would make the use of this machine learning model deployment

more sufficient is to connect the application with any database that the hospital uses to

store patient’s clinical data. With this design, clinicians will not have to manually enter

each patient’s data into the application. The clinical data will be loaded automatically,

data processing and prediction will be made behind the scene and constantly get updated

as more relevant information come in. When the clinician needs to make a diagnosis, he

or she can simply pull up the patient’s record and a note from the predictor attaching

predictive values will assist him or her in making the decision.
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Conclusion

Dengue is a mosquito-borne viral infectious disease that has severe impacts on not only

the patients but also on the entire endemic country’s economy. With global warming

and other side effects of technology, Dengue has spread throughout the world and began

wreaking havoc on parts of the world that have never experienced Dengue outbreak

before. Understanding how serious a Dengue outbreak can be without proper preparation,

this project aims to develop a machine learning model that would contribute to the battle

against Dengue reactively.

Using knowledge from previously developed Dengue machine learning models, multiple

version of Severe Dengue Predictors were developed, trialed, and tested. The best

predictor can reach a 96% sensitivity, 94% specificity, 95% PPV and NPV, and the mean

performance of 1 to 9-step-ahead predictors is 82%, 88%, 80%, and 89%, respectively, for

models trained with maximum-data-length.

The working models were then deployed on a web-based application. Multiple trials

which simulates the real-life scenario where users usually only input a few days worth of

data are run, and real-life performance was partially verified to be adequate. Although,

through multiple simulation, it is observed that NPV metric in application is greater

than that of PPV metric.
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This machine learning model is a step closer to control outbreak in a reactive way,

efficiently. Combining with other methods to proactively control Dengue, doctor’s

experience and expertise, Dengue outbreak will have less effect on the economy and

at-risk patients will receive proper treatment on time.
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Appendix A

Severe Dengue Predictors Result

Accuracy Precision Sensitivity Specificity PPV NPV
Training Test Training Test Training Test Training Test Training Test Training Test

1-step-ahead 94± 3 95± 2 93± 3 96± 2 97± 3 96± 4 36± 3 94± 3 57± 2 95± 3 37± 2 95± 6
2-step-ahead 93± 4 95± 1 91± 4 93± 2 96± 6 98± 2 44± 3 92± 3 48± 3 91± 2 45± 2 98± 2
3-step-ahead 88± 4 89± 3 84± 4 86± 6 92± 8 92± 4 46± 3 90± 4 42± 3 85± 6 44± 3 92± 3
4-step-ahead 86± 4 86± 3 81± 4 84± 3 89± 8 84± 5 47± 3 87± 3 38± 4 81± 4 49± 1 86± 4
5-step-ahead 86± 4 86± 2 80± 4 82± 4 89± 9 85± 5 49± 3 87± 5 36± 4 80± 5 50± 1 88± 3
6-step-ahead 85± 4 85± 2 79± 4 81± 4 86± 8 82± 4 48± 3 86± 3 35± 3 78± 6 50± 2 86± 3
7-step-ahead 81± 3 79± 4 73± 3 72± 6 81± 10 73± 12 49± 3 82± 4 31± 4 70± 5 51± 2 82± 6
8-step-ahead 80± 3 83± 2 68± 4 75± 3 72± 12 75± 9 54± 3 82± 5 24± 4 65± 8 56± 2 84± 9
9-step-ahead 84± 3 85± 2 77± 7 83± 5 51± 11 53± 12 64± 4 89± 1 12± 3 77± 9 71± 2 86± 3

Table A.1: Full Performance of 9 Dynamic Severe Dengue Predictor trained with
Maximum-data-length Format

Accuracy Precision Sensitivity Specificity PPV NPV
Training Test Training Test Training Test Training Test Training Test Training Test

3-step-ahead 89± 4 90± 2 82± 4 85± 5 95± 3 96± 2 45± 3 89± 4 43± 1 84± 6 46± 3 95± 2
4-step-ahead 87± 4 88± 3 79± 4 85± 4 93± 3 87± 3 46± 3 87± 4 40± 1 82± 4 47± 3 88± 4
5-step-ahead 86± 4 87± 3 78± 4 81± 5 93± 4 91± 6 48± 4 85± 6 38± 2 78± 7 49± 3 91± 4
6-step-ahead 85± 4 85± 1 76± 4 79± 5 92± 3 87± 6 47± 3 85± 5 37± 1 77± 6 48± 3 89± 3
7-step-ahead 82± 3 80± 3 71± 4 70± 4 90± 5 84± 6 47± 3 79± 3 34± 2 67± 4 48± 2 87± 5
8-step-ahead 80± 3 81± 2 66± 4 69± 5 84± 5 82± 7 51± 4 82± 7 53± 2 62± 11 53± 2 90± 3
9-step-ahead 83± 3 86± 5 67± 6 73± 14 62± 9 75± 10 61± 4 86± 5 15± 2 67± 15 68± 2 92± 3

Table A.2: Full Performance of 9 Dynamic Severe Dengue Predictor trained with
Maximum-data-length Format and α = 1.5

Accuracy Precision Sensitivity Specificity PPV NPV
Training Test Training Test Training Test Training Test Training Test Training Test

1-step-ahead 94± 3 95± 1 94± 3 97± 1 98± 1 97± 1 14± 2 79± 10 79± 1 97± 2 14± 3 70± 5
2-step-ahead 91± 5 94± 1 91± 4 95± 1 97± 2 97± 2 19± 3 85± 4 71± 1 95± 1 20± 4 94± 4
3-step-ahead 90± 5 93± 3 89± 5 93± 4 97± 2 92± 2 27± 3 84± 4 62± 1 92± 4 28± 4 93± 4
4-step-ahead 90± 5 92± 3 88± 5 91± 2 97± 2 97± 2 29± 3 85± 7 59± 1 90± 2 30± 4 93± 5
5-step-ahead 89± 5 91± 2 86± 4 88± 3 97± 2 99± 1 30± 3 83± 6 57± 1 86± 3 31± 4 88± 3
6-step-ahead 88± 4 89± 2 84± 4 83± 3 93± 3 97± 2 40± 3 82± 4 46± 2 85± 3 42± 3 96± 3
7-step-ahead 85± 4 85± 4 82± 4 81± 3 86± 3 88± 6 38± 3 78± 4 42± 2 81± 4 43± 3 88± 5
8-step-ahead 80± 4 83± 5 67± 8 70± 9 55± 18 67± 13 58± 4 87± 1 15± 5 66± 16 65± 3 88± 4
9-step-ahead 82± 3 81± 3 39± 34 36± 37 7± 9 15± 15 68± 5 88± 3 1± 2 26± 22 81± 3 36± 37

Table A.3: Full Performance of 9 Dynamic Severe Dengue Predictor trained with
Median-data-length Format
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Appendix B

Sample Data for Simulation

Patient ID Day From Onset Vomiting Body Temperature Respiratory Rate Haemoglobin Haematocrit Percent Platelet Count Bleeding Vaginal Bleeding Mucosal Abdominal Pain Label

1888 0 1 0 0 0 0 0 0 1 0 1
1888 3 1 0 0 0.272727 38 53 0 1 0
1888 4 1 0 0 0.272727 41.2 31.4 0 1 0
1888 5 1 0 0 0.272727 46.7 21.1 0 1 0
1888 6 1 0 0 0.272727 49 79 0 1 0
1888 7 1 0 0 0.272727 48 102 0 1 0
1888 8 1 0 0 0.272727 42 0 0 1 0
1888 9 1 0 0 0.272727 40 0 0 1 0
1888 10 1 0 0 0.272727 40 0 0 1 0

Table B.1: Clinical Data of Patient 1888. Row 2 and 3 Were Used for Simulation

Patient ID Day From Onset Vomiting Body Temperature Respiratory Rate Haemoglobin Haematocrit Percent Platelet Count Bleeding Vaginal Bleeding Mucosal Abdominal Pain Label

602 0 1 0 0 0 0 0 0 0 0 1
602 2 1 0 0 0 0 0 0 0 0
602 4 1 39 18 0.351351 36.4 110 0 0 0
602 5 1 0 0 0.351351 35.6 99 0 0 0

Table B.2: Clinical Data of Patient 602. Row 3 and 4 Were Used for Simulation

Patient ID Day From Onset Vomiting Body Temperature Respiratory Rate Haemoglobin Haematocrit Percent Platelet Count Bleeding Vaginal Bleeding Mucosal Abdominal Pain Label

641 0 1 0 0 0 0 0 0 0 0 0
641 2 1 0 0 0 0 0 0 0 0
641 3 1 38 18 0 35.8 82 0 0 0
641 4 1 0 0 0 39.7 98 0 0 0
641 5 1 0 0 0 35.9 142 0 0 0
641 6 1 0 0 0 35.5 146 0 0 0

Table B.3: Clinical Data of Patient 641. Row 3 and 4 Were Used for Simulation

Patient ID Day From Onset Vomiting Body Temperature Respiratory Rate Haemoglobin Haematocrit Percent Platelet Count Bleeding Vaginal Bleeding Mucosal Abdominal Pain Label

920 0 0 0 0 0 0 0 0 0 0 0
920 3 0 40 24 0.03 40.5 193 0 0 0
920 4 0 0 0 0.03 41 166 0 0 0
920 5 0 0 0 0.03 39 220 0 0 0
920 6 0 0 0 0.03 39.9 187 0 0 0
920 7 0 0 0 0.03 37.4 180 0 0 0
920 8 0 0 0 0.03 41.2 202 0 0 0

Table B.4: Clinical Data of Patient 920. Row 2 and 3 Were Used for Simulation
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Patient ID Day From Onset Vomiting Body Temperature Respiratory Rate Haemoglobin Haematocrit Percent Platelet Count Bleeding Vaginal Bleeding Mucosal Abdominal Pain Label

934 0 1 0 0 0 0 0 0 0 1 0
934 2 1 0 0 0.259459 36.5 136 0 0 1
934 3 1 0 0 0.259459 32 148 0 0 1
934 4 1 0 0 0.259459 36 60 0 0 1
934 5 1 0 0 0.259459 33.7 93 0 0 1
934 6 1 0 0 0.259459 39.5 100 0 0 1
934 7 1 0 0 0.259459 46.6 50 0 0 1
934 8 1 0 0 0.259459 34.5 64 0 0 1
934 11 1 0 0 0 0 0 0 0 1
934 118 1 0 0 0 0 0 0 0 1
934 120 1 39 24 0 0 0 0 0 1
934 122 1 0 0 0 0 0 0 0 1

Table B.5: Clinical Data of Patient 934. Row 2 and 3 Were Used for Simulation
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