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Why

Proportion of countries reporting: Large decrease Moderate decrease No impact

a. Reported impact of COVID-19 on funding for AMR activities

Availability of funding for AMR surveillance at
the national level (n=70) 41% o

Availability of funding for AMR surveillance at
the local (facility) level (n=69) 4% o1%

b. Reported impact of COVID-19 on partnerships and oversight for AMR activities

Ability to work with existing AMR partnerships,
e.g. international, regional laboratory or 67%) 2%
facility networks (n=72)

Economic

Ability to create new AMR partnerships, e.g
international, regional laboratory or facility 60% 25%
networks (n=73)

Oversight and accountability by national AMR
coordinating body of ongoing AMR activities 63% 30%
(n=

c. Reported impact of COVID-19 on diagnostics and laboratory testing for AMR

Feasible

Number of clinical cultures, i.e. workload of
routine microbiology (culture, susceptibility 67%) 26%
testing) (n=69)

Number of screening cultures to detect multidrug
resistant organisms (n=68) 5% 2%

Turn-around time of antimicrobial susceptibility 30% 60%

Realistic

results (n=70)

Ability to carry out routine laboratory quality .
management activities (n=68) Loy s

Ability to carry out molecular testing, including

Whole Genome Sequencing, for multidrug resistant 46%) 51%
organisms (n=59)

Ethical

Ability to provide training for laboratory
personnel (n=69) Wy %

Resilient
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and

Availability of quality laboratory
ager for gy and 58%: 1% 1%
antimicrobial susceptibility testing (n=71)

re:

Ability of laboratories to service their machines
and equipment, e.g. repairs, compliance and 52% 46% 1%
updates (n=67)

Access to advanced technologies e.g. molecular "
testing for multidrug resistant organisms (n=66) 44% 50% 6%

e. Reported impact of COVID-19 on the availability of staff responsible for AMR activities

Availability of public health staff to respond to
routine AMR activities, e.g. reporting, outbreak
response, including healthcare associated 64%) 28% 7%

foodbor t
sexually transmitted diseases (n=67)

Availability of medical doctors for AMR
activities, e.g. stewardship, infection 69% 21% 10%
prevention and control (n=68)
Availability of nursing staff for AMR activities,
e.g. stewardship, infection prevention and 71% 21% 9%
control (n=68)
Availability of infection control focal persons
for AMR activities (n=68) 56% 2% 18%
Availability of environmental/cleaning service 00
workers (n=67) 3% " S
Availability of laboratory staff for AMR
diagnostics and testing (n=68) % 4% €
00
f. Reported impact of COVID-19 on AMR data information systems +
Changes to procedures and infrastructure of 00
laboratory information systems for AMR reporting 17%) 78% 6%
(n=72)
Changes to procedures and infrastructure of
hospital clinical information systems for AMR 15%; 79% 6%
response (n=67) 00

change

No change [ll Large change
200

100

7-Jan-21 7-Feb-21

7-Oct-20

7-Aug-20 7-Sep-20 7-Nov-20 7-Dec-20

Zhu, CID, 2021; Tomczyk, 2021

Number of COVID-19 cases / admissions
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What

Individual

Ecological

PID: 0000001
Date: 05-06-2024
Organism: 80166006 Streptococcus pyogenes (organism)

PID: 0000001

Date: 06-06-2024

Observation: 267102003 Sore throat (finding)
Post code: W12 xx

Postcode: W12 ONN

LOSA (lower layer super output area): E01001876
Multiple index of deprivation: 2

Deprivation rank: 5,098 (out of 32,844)
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What

Individual

Probabilistic:

» Matching cases / data entries based on multiple
non-unique variables.

» A hierarchy of variables can be defined based on
data quality of each variable (e.g., admission
date > DOB > gender > postcode).

« Adistance between two datasets can be
calculated between complete agreement and
complete disagreement.

Deterministic:

» Exact one-to-one character
matching using unique identifier
universal across datasets
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De-duplication: define rule to de-duplicate when the data
rows are not identical (e.g., the worst-case scenario is taken
when there are multiple susceptibility test results for one
isolate).

Patient level: (common practice) multiple blood specimens

f‘ST test level. R *1 tl =R, 1+8S were taken on the same date these were combined and
=1, 1+ undetermined = | account for 1 test only, subsequent patient specimens were
excluded

Isolate level: to determine
whether it is a contaminant (blood

commensals)

Convert to infection episode (case): based on pre-defined
time window, determined by incubation period

Common bacteria: 14 days (static / rolling)
SARS-CoV-2: 60 days
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Imputation: replace missing values with substituted values
What (based on distribution). Whether there is a pattern of

missing data might indicate surveillance gaps.

Frequency (n)
20 30 40

10

0 20 40 60 80 100
Length of Stay (days)

Almeida, PLOS One, 2019
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Denominator: essential when estimating prevalence and
incidence, also indicates capacity / interruption of service

National lockdown period

Blood cultures sampled per 1,000 patient-days (7-day rolling average)
- « = Baseline (2016 to 2019 4-year average)

= Positive blood cultures per 1,000 patient-days (7-day rolling average)
== == « COVID-19 cases admitted

160

140

120

100

80

60

40

Number of blood culture sets per 1,000 patient-days

80

Number of COVID-19 cases per day

Zhu, CID, 2021
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A. Different types of data available from
healthcare and non-healthcare sources

C. Examples of data application

D. Data-driven outputs

[ Non-healthcare ] [ Healthcare

Predict AMR emergence

Laboratory & diagnostic data

Assess cross-sectoral

* Genomic data

* Phenotypic data

* Transcriptomics & metabolomics
* Diagnostic & screening

* Community-
based
screening

AMR transmission

Detect AMR Monitor AMR

Administrative & clinical data of individuals & populations

gene carriage || epidemiology

* Administrative * Antimicrobial usage

records * Demographic & co-morbidities
* Behavioural * Clinical features & outcomes
factors * Patient & population movement

Analyse biomarkers
and images

Predict treatment

Contextual determinants of organisations & systems

outcomes

* Policies & guidance
ecological  Staffing & resources
determinants * Medical waste management
* Health economics & financing
¢ Governance & regulation

* Infrastructure & technology

* Social, cultural,

Support therapeutic
decisions

Guide IPC |
Build networks of

J1
|
patient movements

B. Advances in data technologies

[ ML-based clinical decision-support systems

| Detect outbreaks I

Movement & | Mathematical &
transmission || epidemiological
simulation modelling

Automated
imagine analysis

ﬁ [ Design and evaluate |
public health policies ]

Evaluate health and |

Cloud-based computing and
data sharing

Trusted research
environments

economic impact

rSupport health systemsw

[ Data linkage and integration

strengthening

Antimicrobial optimisation

* Clinical decision support systems

* Optimised therapeutics and precision medicine
* Enhanced antimicrobial stewardship

Infection prevention & control
Prediction and prevention HCAIs
Targeted prophylaxis
Patient cohorting and IPC intervention
Enhanced environmental cleaning practices

Surveillance and tracking

* Genomic and pathogen integrated surveillance
* Qutbreak forecasting and detection tool

* Patient movement and contact tracing system

Health systems strengthening
* Reduced health and economic burden of AMR
* Interventions for low-resourced settings to minimise

inequalities
* Protected healthcare workforce

Protect individuals, populations
and health systems

Cocker, 2024, Nature Reviews Microbiology in press
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Specimen-based AMR surveillance

-[-:-
II-

Surveillance Sites

2

National Reference

Laboratory

-[I:-
-.-

Surveillance Sites

National Coordinating
Centre

7

.g-
Il.

Surveillance Sites

Key issues:

Metadata: minimal requirement
(species, AST, type of specimen);
additional: demographic,
epidemiological variables
Microbiological investigation vs routine
surveillance

|solate-based (positives only) vs
specimen-based (with denominators)

WHO GLASS, 2014
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Key issues:

Case-based HCAI surveillance * Metadata: patient demographic,
device / procedures

« Denominators: number of patients,
patient-days, device-days, and
procedures

* Reporting: incidence vs prevalence
* Risk stratification

 Case identified with or without
individual review

Review No review

Can be retrospectively done
with routine data but with
limited validity

IPC workload — disruption
Delay / missed in reporting

Risk factors / risk stratifications
Treatment and outcomes

University of Washington IPC training
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AMU surveillance -

Iceland

Key issues:
* Prescribing indicators relying on point-
prevalence surveys -

* Prescribing vs dispensing
« Over-the-counter / online purchase
- Data from health and/or non-health

UK-Northern Ireland-{

sectors (e.g., importing/exporting, e
retailers, pharmaceutical firms) o

T T T T T
o 25 50 75 100

Proportion of total antimicrobial use (%)

mm Community infection wm Hospital infection = Long-term care infection

mm Surgical prophylaxis mm Medical prophylaxis mm Other

ws Unknown indication mmm Unkown/missing

ECDC, 2018
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Genomic surveillance

Dr Patrick Musicha (Malawi)

DRUM

Drivers of Resistance in Uganda & Malawi




Imperial College
London

Why within CAMO-Net

Mutual goal

Mutual challenges

What is available

Gaps, limitations, and assumptions

Approaches that tolerate the imperfection and get the job done

Feasible for all countries / settings without asking for more
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Imperial College Healthcare

ENVIRONMENT

London
NOW . SECURE DATA

NHS Trust
iCARE —CIPHA
o—_
Combined Intelligence for
Population Health Action
Routine EHR Routine HER

AMR & pathology

Liverpool
Clinical
Laboratories

NHS

North West
London Pathology

(secondary care)

(primary care)

Administrative records

PK/TDM

« Continued and enhanced monitoring of HCAI
using diagnosis-based routine EHR

« Estimating prescribing and other economic cost

associated with HCAI

» Improving case identification and outcome
assessment in primary care

* Addressing social determinants
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HCAI: diagnosis-based EHR

Parents Parents
» = Complication of urinary catheter (disorder) » = |Infection associated with catheter (disorder)
9 = Infection associated with catheter (disorder) » = Infection associated with vascular device (disorder)
9 = Infection associated with genitourinary device (disorder) > = Infection following procedure (disorder)
» = Infection following procedure (disorder) » = Infection of bloodstream (disorder)
» = Urinary tract infectious disease (disorder) » = |Infectious disease of cardiovascular system (disorder)
i .|
e Urinary tract - - © Infection o_f * = After — Central venous cannula
. . X . Pathological process — Infectious bloodstream co insertion
infection associated with process occurrent and due to central
catheter (disorder) Finding site — Urinary system v&e_nouds catheter in situ Causative agent — Central venous
SCTID: 700372006 structure (disorder) catheter, device
700372006 | Uri tract infecti SCTID: 736152001 Pathological process — Infectious
rinary tract infection A~ A
associated with catheter (disorder) | After — Catheterization of urinary 736152001 | Infection of bloodstream process
. . bladder co-occurrent and due to central Finding site — Structure of
Catheter-associated urinary tract venous catheter in situ (disorder) | cardiovascular system
|nfecF|on . ' . ' Associated with — Urinary catheter, Tesien Gk EiEe G
Urinary tract infection associated with device T T E G Gt VET IS
catheter catheter in situ (disorder)

Urinary tract infection associated with
catheter (disorder)

Infection of bloodstream co-
occurrent and due to central venous
catheter in situ

Central venous catheter associated
Children (1) bloodstream infection

CLABSI - central line associated
bloodstream infection

= = Infection of bladder catheter (disorder)
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HCAI: diagnosis-based EHR

Challenges / scope of work:
« Correctly identify HCAI cases

* Use admission dates / previous admissions to determine
healthcare association

« Use procedures (e.g., insertion of central venous catheter) to
identify device-associated infections — removal does not get
documented

» Use free-text notes (when available) to validate case identification




Imperial College
London

HCAI: diagnhosis-based EHR with pathology

» Six blood parameters (CRP, WBC, bilirubin,
creatinine, ALT and alkaline phosphatase)
were used in the model.

* Mean likelihood estimates for those with
and without infection were significantly
different. The infection group had a
likelihood of 0.80 and the non-infection
group 0.50.

Sensitivity

0.8

0.6

0.4 —

0.2 4

Cut-off values:
Likelihood 0.812; sensitivity = 89%, specificity =63%
Likelihood 0.820; sensitivity = 44%, specificity =93%

ROC AUC=0.84

I I I 1
0.4 0.6 0.8 1.0

1 - Specificity

Rawson, JAC, 2018
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HCAI: diagnosis-based EHR with microbiology

Clusters ... . . ° ‘. ................. Cluster 2
......... ° ° [ ] reeen Cluster 4
Cluster 1.1.. o0 PR N e R
............... ® P . [ &
. Cluster & ... .... ° . .. M Cluster 5
« All 17 BSI cases would be considered T ) o sy STee o
blood contaminants if following the current Custer 7 o T o o :;-.’-;',‘,'-,' e
. . ) [ ]
case criteria. o SO et (30 b Cluster 8
H famt AAEAAta Al I A Cluctor T Q ssessssnssssssssagessshzriisniigey Y e uster
+ Reconstruction of patient contacts can be Cluster 1.3+ 8 G0 N
used to identify outbreaks of different I N T e s
pathogens : ’ ole L SYAN o Tl Cluster 10
o * *(o\... - ®
Cluster 11 """ d ° o Tl Cluster 12
(i) COVID-19 Cases (ii) Rifampicin resistance (iii) Time of contact
3 ‘ % & =

NI 1 L
@®HOCI ® pHOCI COcClI . - -
Negative ®Resistant Sensitive March 2020 May 2021

Myall, Zhu, Jauneikaite, unpublished data
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HCAI: diagnosis-based EHR

Challenges / scope of work:
» Risk prediction using pathology data: infection acquisition,
treatment response

« Re-visit case criteria to determine true infections / clinically
relevant infections
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HCAI: risk prediction

A Allmodels

1-00-

0-75-

0-50

True positive rate

0-25+

AUC-ROC
— Full model=0-89

Clinical=0-64

—— Contextual=0-82
—— Network=0.-88

+ The framework was highly predictive across test data
with all variable types (AUC-ROC 0.89) and similarly
predictive using only contact-network variables (0.88).
Prediction was reduced when using only hospital
contextual (0.82) or patient clinical (0.64) variables.

* A model with only 3 variables (network closeness,
direct contacts with infectious patients, and hospital
prevalence) achieved AUC-ROC of 0.85.

B Network models

" AUC-ROC
— All network=0-88
—— Network room=0-82
—— Network ward=0-87
— Network building=0-85

C Risk-factor models

AUC-ROC
—— Combined=0-89
—— Contextual=0-82
—— Network (ward)=0.87

0 025 050
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False positive rate

1
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Myall, Lancet Digital Health, 2022



Included | Can your organisation report Is this part of the routine
in this indicator with existing | reporting of your organisation?

o
GLASS datasets? (feasibility) (feasibility)
Imperial College YT

Was reporting of this indicator Do report this at national ‘Should this be included as the
disrupted during COVID-197 you repor minimal |mportance
level? (feasibility)
(feasibility) requirement? (importance) (score)

i
3

Do you report an alternative
indicator? (feasibility)

x
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LO n d 0 n Healthcare associated infection
[Blood culture sets cultured per 1000 patient-days

MRSA screens per 1000 hospital admissions
|CPO screens per 1000 hospital admissions
Clostridiodies diffcile per 100,000 patient-days
CLABSI per 1000 line-days
ICAUTI per 1000 catheter-days
|VAP per 1000 ventilator-days
ICPO BSI per 100,000 patient-days
MRSA BS! per 100,000 patient-days
MSSA BSI per 100,000 patient-days
ia coli BSI per 100,000 patient-days
Kiebsiella spp. BSI per 100,000 patient-days
BSIper
IVRE BSI per 100,000 patient-days
Enterobacterales BSI per 100,000 patient-days
Candida spp. BSI per 100,000 patient-days
ICoNS BSI per 1000 patient-days (additional recommendation reflecting
level of contaminants)
Corynebacterium spp. BSI per 1000 patient days (additional

Enhance HCAI i

lgentamicin 3
5 tests (%) to
lciprofloxacin 3

surveillance and ris - 3

|generation cephalosporins 3
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g £
s 5 ¢
£ g

India
Thailand
UK
France
Saudi
Arabia
India
Thailand
UK
France
Germany
Saudi
Avabia
India
Thailand
Thailand

§at

Saudi
Arabia
India
Thailand
India
Thailand

SIS

wwnssss s

v 80w

Antimicrobial consumption

Total DDD per 1000 ds
Total antifungal prescribing DDD per 1000 patient-days
. . Proportion of WHO AWaRe agents (%): proporton of “Access” antibiotics
[ S t a n d a rd I S a tl O n Proportion of WHO AWaRe agents (%): proportion of “Watch® antibiotics
Proportion of WHO AWaRe agents (%): proporton of ‘Reserve" antibiotics|

|Oral and intraven DDD ratio

H [Confirmed COVID-19 per 1000 hospital admission
[ ] X a n S I O n Hospital beds occupied; occupied by COVID-19 patients (%)
ICU beds occupied; ocoupied by COVID-19 patients (%)
Detected hospital onset COVID-19 infections (HOC) (% of total confirmed
IcovID-19)

|All-cause mortality within 28 days of COVID-19 diagnosis
ICU nurse to patientratios
(

e w s

COVID-specific surveillance

v n

v w0

ted, first vaccinated)

Focused surveillance for HCAl during COVID-19 (split for ICU and non-ICU patients)

Hospital length of stay
ICU length of stay

|Outcomes from admission: death/alive

|Community or hospital onset COVID-19

Maximum level of care required

| Community acquired (confirmed within 48h after admission)
bacterial/fungal infection in patients with COVID-19: site of infection 2
|Community acquired (confirmed within 48h after admission)
bacterialfungal infection in patients with COVID-19: organism and
|susceptibility 2|
Healthcare associated (confirmed after 48h after admission)
bacterialfungal infection in patients with COVID-19: critical ca
lassociated or not? 3
Healthcare associated (confirmed after 48h after admission)
bacterial/fungal infection in patients with COVID-19: site of infection 3
Healthcare associated (confirmed after 48h after admission)
bacterialfungal infection in patients with COVID-19: organism and
|susceptibility

Proportion of antimicrobials prescribed overall: type of agents, duration of
reatment

|Antimicrobials prescribed before confirmation of COVID-19
|Antimicrobials prescribed after confirmation of COVID-19

|COVID-19 specific therapies received

lc therapies

sunew

v w o wa

Yes

Maybe

No

Disrupted during the COVID-19 pandemic
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Zhu, SSRN, 2021



Imperial College
London

Community: case identification

| SNOMED CT |

| Clinical finding

T

l Infectious disease ]’
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Bacterial
pneumonia

pneumonia

Tiered approach based on what is
commonly included in primary care
records:

Coded diagnosis

Diagnosis derived from tests
Observations / complaints
Prescriptions
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Community: case identification

Challenges / scope of work:
« Correctly identify community-acquired cases

 Look for either order of tests or test results to confirm whether
diagnostics were performed

« Use antibiotic history and hospital admission to determine
healthcare association
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Across all sectors: address health inequalities

Challenges / scope of work:

« people with multiple long-term health conditions and polypharmacy
» young carers, looked after children or care leavers

« care home residents

* residents in overcrowded households

* inclusion health groups (homeless, drug and alcohol dependent, Roma /
Gypsy / traveller communities, sex workers, migrants, people in contact with
justice systems and victims of modern slavery) - normally with limited data
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Across all sectors: the economic burden of AMR

* |tem-based micro-costing

* Healthcare resource group-based micro-costing
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What is Healthcare Resource Group

« AHRG is a set of diagnoses or procedures which are similar in
terms of care delivered and resource use

Example: HB12B - Major Hip Interventions for non trauma category 1 with CC

HRG chaptere.g. H -
Musculoskeletal system

Chapter and sub-chapter \ Number Complexity split

HRG sub-chapter e.g. HA - Orthopaedic Trauma H Blz B
Procedures; HB - Orthopaedic Non-Trauma Procedures;
HC - Spinal Surgery and Disorders; HD - Musculoskeletal / \ \ _
Disorders; HR - Orthopaedic Reconstruction Procedures Musculoskeletal System B represents with
Orthopaedic non-trauma complications
interventions

HRG — 196 split across the
five HRG sub-chapter types

In order to reflect the complexity of care delivered, HRGs capture: (i) comorbidities
(i) complications (iii) age (d) length of stay.
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How a tariff is set

H
Y « Cost: national average
Y
A T« A
« Currenc
’
Epistaxis Causation No.Cc-)-' L. .
e e - Efficiency: to adjust for the gap
/j between commissioner
funding allocation and supplier

Minor Nose Procedures
Dieadon HRG GROUPER TARIFF cost
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Across all sectors: the economic burden of AMR

Challenges / scope of work:

« consistently defined comparators: AMR vs no AMR
« elements / items to cost

» time horizon

» in-direct medical costs

* loss of medical workforce due to transmission
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Messages

« Data linkage and integration is the way forward.

« At CAMO-Net UK, our goal is to develop feasible, contextually fit
methods to support curation, processing, linkage, and analysis of data
for all partner institutes and countries.

« Technological and ethical considerations? Our activity
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Activity

 What data do you have in primary and secondary care

» Level of linkage: within one hospital, multiple hospitals, hospitals and
primary care)

« Coverage: regional / sub-national, national, international
« Types of data: diagnoses, laboratory, prescribing
« Data pre-processing: clinical vocabulary / codes vs free-text

« Who are the data controllers
« (Governance mechanism




