Dynamic Graph Machine Learning for Early Detection of Antimicrobial Resistant Outbreaks

Oskar Fraser-Krauss

Imperial College London

21st June, 2024

Oskar Fraser-Krauss

Imperial College London

- Explain disease propagation using graphs

Oskar Fraser-Krauss

Imperial College London

- Explain disease propagation using graphs
- Predict spread using machine learning

Imperial College London

- Explain disease propagation using graphs
- Predict spread using machine learning
- Determine intervention strategies

Imperial College London

Oskar Fraser-Krauss

Imperial College London

Data and Graphs

Column Name	Data Type
patient id	str
admission time	datetime
discharge time	datetime
bed number	int
disease status	bool

Oskar Fraser-Krauss

Imperial College London

Data and Graphs

Column Name	Data Type
patient id	str
admission time	datetime
discharge time	datetime
bed number	int
disease status	bool

- We build a graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ where the vertices (or nodes) \mathcal{V} represent patients, and the edges \mathcal{E} represent interactions between patients

Oskar Fraser-Krauss

Imperial College London

Data and Graphs

Column Name	Data Type
patient id	str
admission time	datetime
discharge time	datetime
bed number	int
disease status	bool

- We build a graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ where the vertices (or nodes) \mathcal{V} represent patients, and the edges \mathcal{E} represent interactions between patients
- Each node $v_i \in \mathcal{V}$ contains a set of features h_i

- Build daily graphs $\mathbb{G} = \{\mathcal{G}^0, \mathcal{G}^1, \dots, \mathcal{G}^T\}$

Oskar Fraser-Krauss

Imperial College London

- Build daily graphs $\mathbb{G} = \{\mathcal{G}^0, \mathcal{G}^1, \dots, \mathcal{G}^T\}$

Oskar Fraser-Krauss

Imperial College London

- Build daily graphs $\mathbb{G} = \{\mathcal{G}^0, \mathcal{G}^1, \dots, \mathcal{G}^T\}$

- Given $\mathcal{G}^0, \mathcal{G}^1, \mathcal{G}^2$ predict \mathcal{G}^3

Oskar Fraser-Krauss

Imperial College London

Oskar Fraser-Krauss

Imperial College London

Machine Learning

Oskar Fraser-Krauss

Imperial College London

Machine Learning

- Graph neural networks (GNNs)

Oskar Fraser-Krauss

Imperial College London

Machine Learning

 $-\,$ Graph neural networks (GNNs) $\,$

 $\rightarrow~{\rm Message}~{\rm passing}$

Oskar Fraser-Krauss

Imperial College London

- Graph neural networks (GNNs)
 - $\rightarrow~{\rm Message}~{\rm passing}$
 - $\rightarrow\,$ Incorporate features of neighbouring nodes and gain information about position in the graph

Imperial College London

- Graph neural networks (GNNs)
 - $\rightarrow~{\rm Message}~{\rm passing}$
 - $\rightarrow\,$ Incorporate features of neighbouring nodes and gain information about position in the graph
- Multiply by (learnable) weight matrix and apply activation function to predict node labels

Imperial College London

Oskar Fraser-Krauss

Imperial College London

$$h_i^{(l+1)} = \left(\sum_{j \in \mathcal{N}(i)} \frac{1}{c_{ji}} h_j^{(l)}\right)$$

Oskar Fraser-Krauss

Imperial College London

$$h_i^{(l+1)} = \left(\sum_{j \in \mathcal{N}(i)} \frac{1}{c_{ji}} h_j^{(l)}\right)$$

Oskar Fraser-Krauss

Imperial College London

$$h_i^{(l+1)} = \left(\sum_{j \in \mathcal{N}(i)} \frac{1}{c_{ji}} h_j^{(l)}\right)$$

Oskar Fraser-Krauss

Imperial College London

$$h_i^{(l+1)} = \left(\sum_{j \in \mathcal{N}(i)} \frac{1}{c_{ji}} h_j^{(l)}\right)$$

Oskar Fraser-Krauss

Imperial College London

$$h_i^{(l+1)} = \sigma \left(\sum_{j \in \mathcal{N}(i)} \frac{1}{c_{ji}} h_j^{(l)} W^{(l)} \right)$$

Oskar Fraser-Krauss

Imperial College London

Oskar Fraser-Krauss

Imperial College London

– Simulate 100 outbreaks each 7 days long

 $\rightarrow~$ Train with 80, test with 20

Oskar Fraser-Krauss

Imperial College London

- $-\,$ Simulate 100 outbreaks each 7 days long
 - $\rightarrow~$ Train with 80, test with 20
- Train weights using first 5 days as features, 6th and 7th day as labels

Imperial College London

- $-\,$ Simulate 100 outbreaks each 7 days long
 - $\rightarrow~$ Train with 80, test with 20
- Train weights using first 5 days as features, 6th and 7th day as labels
- Validate on test set

Oskar Fraser-Krauss

Imperial College London

Results

Oskar Fraser-Krauss

Imperial College London

Results

Oskar Fraser-Krauss

Imperial College London

Oskar Fraser-Krauss

Imperial College London

 Using simulated data, a basic Graph Neural Network can learn dynamics of a simple outbreak in a patient network

Imperial College London

- Using simulated data, a basic Graph Neural Network can learn dynamics of a simple outbreak in a patient network
- High accuracy from small number of training graphs

Imperial College London

- Using simulated data, a basic Graph Neural Network can learn dynamics of a simple outbreak in a patient network
- High accuracy from small number of training graphs
- (Roughly) captures incubation time

Imperial College London

Oskar Fraser-Krauss

Imperial College London

- Use real data!

10/12

Oskar Fraser-Krauss

Imperial College London

- Use real data!

 $\rightarrow\,$ I deally apply to as many datasets as possible

Oskar Fraser-Krauss

Imperial College London

- Use real data!

- $\rightarrow\,$ I deally apply to as many datasets as possible
- $\rightarrow~$ Design to accommodate real time analysis

Imperial College London

- Use real data!

- $\rightarrow\,$ I deally apply to as many datasets as possible
- $\rightarrow~$ Design to accommodate real time analysis
- Model interventions

Imperial College London

- Use real data!
 - $\rightarrow\,$ I deally apply to as many datasets as possible
 - $\rightarrow~$ Design to accommodate real time analysis
- Model interventions
- Consider more complitcated infection status

Imperial College London

- Use real data!
 - $\rightarrow\,$ I deally apply to as many datasets as possible
 - $\rightarrow~$ Design to accommodate real time analysis
- Model interventions
- Consider more complitcated infection status
 - $\rightarrow\,$ I deally this would be a label with the type of infection or detailed genomic data

Imperial College London

- Use real data!
 - $\rightarrow\,$ I deally apply to as many datasets as possible
 - $\rightarrow~$ Design to accommodate real time analysis
- Model interventions
- Consider more complitcated infection status
 - $\rightarrow\,$ I deally this would be a label with the type of infection or detailed genomic data
- Include more detailed patient information

Imperial College London

- Use real data!
 - $\rightarrow\,$ I deally apply to as many datasets as possible
 - $\rightarrow~$ Design to accommodate real time analysis
- Model interventions
- Consider more complitcated infection status
 - $\rightarrow\,$ I deally this would be a label with the type of infection or detailed genomic data
- Include more detailed patient information
 - $\rightarrow\,$ e.g. age, comorbidities

Oskar Fraser-Krauss

Imperial College London

- Use real data!
 - $\rightarrow\,$ I deally apply to as many datasets as possible
 - $\rightarrow~$ Design to accommodate real time analysis
- Model interventions
- Consider more complitcated infection status
 - $\rightarrow\,$ I deally this would be a label with the type of infection or detailed genomic data
- Include more detailed patient information
 - $\rightarrow\,$ e.g. age, comorbidities
- Extend beyond a single ward

Imperial College London

Further Thoughts

Oskar Fraser-Krauss

Imperial College London

Further Thoughts

- Incorporate different layouts

Oskar Fraser-Krauss

Imperial College London

- Incorporate different layouts
- Modelled without in-depth understanding of how wards are run

Oskar Fraser-Krauss

Imperial College London

- Any questions?

12/12

Oskar Fraser-Krauss

Imperial College London