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Current approach to sepsis assessment

No screening tool is perfect!

Infection but
not sepsis

Negative sepsis screen
(NEWS2 <5 and no Red
Flag) but sepsis present

Need to be mindful that
screening tools are not
100% sensitive

Positive sepsis
screening tool

A

Fundamental problem:
Severity assessment without unbiased
estimate of infection likelihood

Septic Shock

Positive sepsis screen
(NEWS2 25 and/or Red Flag)
but no infection.

At least 20% of patients with
positive sepsis screen do not
have infection.

No benefit and potential
harms from antibiotics

‘Sticky diagnoses’

Prescribing etiquette
‘Culture-negative’ sepsis



Can we move beyond standardized ‘one-size-fits-all’ risk
scores and single biomarkers in sepsis assessment and
leverage the richness of structured data within electronic
health records to estimate likelihood of severe bacterial
infection to guide initial management decisions?
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Development and Evaluation of a Machine
Learning Model for the Early Identification of
Patients at Risk for Sepsis
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Sepsis prediction

Paper Target Condition No. Models Models  No. Patients  No. Features  Hrs el Onsel

Emergency Department

Horng, 2017 Sepsis 15 SYM,GLM, NB, EM IURY, 10-12 - "

Hig, 20 24 - -

Diclahant H H H H 12 u

o1 e Limited evaluation prior to rollout :

In-Hasphear - ] o ]
Khogndi, 2018 Algorithm Pre- Algorithm Post- Clinical process Mortality
Fatoma. 2017 Group implementation implementation Adoption improvement improvement/ROB
McCoy, 2017 Severe sepsi

Lin, 2013 Sept (A) AUC =0.88 ﬂ o

Khoshrevisan, 2018 Sept . . . > . Some statistical D All-cause non- 9
Thiel 2010 Sept EWS2.0 Seri026; Soc: 098 improvement statistical Improvemen

Gianning, 2009 Severe sepsisand Sepl | cccccccccaaa

Intensive Care Unit
Wasg, 2018

Shashekumar I8, 2017

AUC = 0.92, 3hrs prior AUC=0.95, ﬂ . Some statistical . All-cause/sepsis related
Sens: 0.90; Spec: 0.90 improvement statistical improvement
Shashekamar 1, 2017

Sens: 0.90;Spec: 0.81
Scherpfl, 2019 AUC=0.91 H . Sepsis related statistical G
Diesautels, 2016 (8) Sens: 0.83; Spec: 0.96 improvement

Neman, 2118

('Z.ln-n.ll M6 In5|ght AUC=0.95 Sepsis related statistical 9
Kiam, 2017 Sens: 0.92; Spec: 0.92 improvement
Vim Wyk, 2018
Van Wyk, 2019 AUC = 0.74, 4hrs prior 3 S
Muss, 2016 Seve Sens: 0.80; Spec: 0.54 . .Sep5|s related statistical e
Guilksn, 2015 Seve improvement
Shimabukura, 2017 Seve
AUC=7? ﬂ g s
Hesay, 2015 Sept L’/'—__l D Sepsis related statlstlcalb
) Sens: 0.29; PPV: 0.38
CalwenfL2t6 Sept ‘ improvement
EDVIn-HospialICU =~ | ===eceecccccccmmme e e m e eeemeeeeeememeec———emcemo—cccceocemecmemmemzeo o oTSCTCCSSCSSCSoSSooSo------
Hartca, 2019 =
\:: l:m" Scpsls, Scvere sepsts. Seol (E) AUC =097, m 89% alerts Some statistical Sepsis related statistica
G Foi e o TrewScore Sens: 0.80; PPV: 0.27 evaluated improvement improvement
|
Aga cf o |CU predominant
paper Al I e e T S o e S P e e e e e e e
nedel, O H H H 18 = — gosis
e P red Ict on Set Of se ps IS ( l.e. o rga N > | 77-84% alerts . §ome statistical | | D {-\Il-cause non-statistical
: evaluated improvement improvement
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I , l. . ’ o . . o v '3 .
° A” comer’ vs Infectlon Suspected o D Non- statistical | | D All-cause non-statistical
improvement improvement
population.

Fleuren et al., ICM 2020; van der Vegt et al., JAMIA 2023



Heart rate =
Respiratory rate =
Temperature =

Systolic blood pressure =
Oxygen saturation =
White blood cell count =
Age -

Diastolic blood pressure =
Mean arterial blood pressure =
Blood urea nitrogen =
Creatinine =

pH =

Platelet count =
Glucose =

Bilirubin =

Gender =

Bicarbonate =

Care unit =

Lactate =

INR

Hemoglobin =

Race =

PaCO2 -

Pulse pressure =
Glasgow coma score =
FiO2 =

Potassium =
Magnesium =
Hematocrit =

Sodium =

Phosphate -

Chloride =

Calcium =

Anion gap =

—
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Sepsis prediction

Feature set / parameters typically
limited to acute physiology and lab
parameters.

Vital sign
Demographic

Lab

A Focus — early detection and treatment
Observation initiation; Prediction time frame up to
onset of septic shock.

Albumin =

Pa02

Wound type =

Weight =

Surgical specialty =
Mechanical ventilation =
Charlson comorbidity index =
Neutrophil count =

Alkaline phosphatase =
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Fig. 5 Features used in the papers. Features are grouped by type. ESReryt
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RESEARCH ARTICLE

Development and validation of machine

learning-driven prediction model for serious Serious bacterial infECtiOn diagnOSiS

bacterial infection among febrile children in
emergency departments

Bongjin Lee®'®, Hyun Jung Chung?®, Hyun Mi Kang®, Do Kyun Kim®*, Young Ho Kwak®**

Se rious BaCte rial InfeCtion A . AUC (95% CI) = 0.964 (0.943-0.986) B i AUC (95% CI) = 0.950 (0.945-0.956)
(1) Bacteremia defined by growth of a single 09 ?
bacterial pathogen’- ¥ AUC (95% Cl) = 0.902 (0.894-0.910) 0.8
(2) Acute pyelonephritis defined by growth of a 07§ b AT R A
single bacterial urinary tract pathogen at > £ of Fold 1 g ook
10° cfu/mL and presence of a renal involvement g™ el S 2 o5
on DMSA scan, or by any bacterial growth on @ TE 0 Fold 4 Sl
urine obtained by suprapubic aspiration or > Zz i i logistic regression Zz
10* colony-forming units/mL of a single pathogen " &g
on urine obtained by bladder catheterization; 4 5
(3) LObar pneumonla d|agnosed on Chest 0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
radiography; 1 - Specificity 1 - Specificity
(4) :acéeriTl meningitis with a positive cerebrospinal C 1 T — D 1
uid culture; §E H AUC (95% CI) = 0.605 (0.593-0.616)
(5) Bone or joint infections defined as local isolation gar -
or isolation in blood culture of a microorganism » i .
with concomitant arthritis; _ Z; AUC (95% C) = _ Z; 7 auceswcy=
(6) Sepsis defined according to Levy et al. 2 o e @ olf S
g 0.4 g 04 E'l::‘
Bacteremia 26 (5.6%) 03 03 "‘
Urinary tract infection 434 (93.1%) 0.2 0.2 = Ve
Lobar pneumonia 4(0.9%) & ") 0 !
Bacterial CNS infection 1(0.2%) % 01 02 03 04 05 06 07 08 08 1 % 01 02 03 04 05 06 07 08 09 1
Septic arthritis 1(0.2%) Recall Recall




Predicting urinary tract infections in the emergency

department with machine learning

R. Andrew Taylor [&], Christopher L. Moore, Kei-Hoi Cheung, Cynthia Brandt

to a UTI and urine culture results.

Retrospective cohort of ED visits with symptoms potentially attributable

Primary outcome: positive urine culture with >10* CFU/HPF

Secondary: (1) provider documentation of UTI diagnosis; (2) provider

gave antibiotics OR documented a diagnosis of UTI.

structured historical and physical exam findings

Predictor variables: demographics, vitals, lab results, urinalysis results,
outpatient medications, past medical history, chief complaint, and

Models developed using full (211 variables) and reduced (10 variables)

Syndrome-specific diagnosis

- Retrospective Analysis from 4 Emergency

Departments

“Study Time Period 3/2013-5/2016

“Random allocation of visits into 80%/20% Split
between Training and Validation Cohorts

“Positive Urine Culture Defined by:

> 10,000 CFU/hpf

Patient visits during
Study Time Period
(n = 560,515)

Patient visits with
Urine Culture
Results
(n = 143,373)

Final Cohort for
Analysis
(n=80,387)

80%

— Urine Culture Exclusion ———

\
>

Urine Culture

(n=417,142) Y,

| Patients <18 years of age
[ (n=27,801)

[
[ Additional Exclusions —"

\

Training Cohort
(n=64,310)

Validation Cohort
(n=16,077

Patients without
symptoms of UTI
(n=35,185)

Positive Urine
Culture

Negative Urine
Culture

Positive Urine
Culture

Negative Urine
Culture

\

~~ Patient visits without \

\

(n=14,718) (n = 49,592) (n = 3,566) (n=12511)
variable sets. Reduced selected a priori
Machine learning approach: Several different models; 10-fold cross
validation; trained and validated on a random 80%/20% split.
Models AUC (95%CI) Sensitivity (95% CI) | Specificity +LR (95% CI) -LR (95% CI) Accuracy (95% CI) | P-value
» (95% CI)
XGBoost .904(.898-.910) | 61.7(60.0-63.3) 94.9(94.5-95.3) | 12.0(11.1-13.0) | .404(.387-.421) | 87.5 (87.0-88.0) NA
Random Forest 902(.896-.908) | 57.3(55.6-58.9) 96.0 (95.6-96.3) | 14.3(13.0-15.6) | .445(.428-.462) | 87.4 (86.9-87.9) 0.58
Adaboost 880(.874-.887) | 62.2(60.6-63.8) 92.3(91.8-92.7) | 8.06(7.54-8.61) | .409(.392-.427) | 85.6(85.1-86.2) <.001
Support Vector Machine | .878(.871-.884) | 49.6(47.9-512) 96.8(96.4-97.1) | 15.3(13.8-16.9) | .521(.504-.538) | 86.3(85.7-86.8) <.001
ElasticNet .892(.885-.898) | 56.8(55.2-58.4) 94.9(94.5-95.2) | 11.1(10.2-12.0) | .455(.438-.473) | 86.4(85.9-87.0) <.001
Logistic Regression 891 (.884-.897) | 57.5(55.8-59.1) 94.7(94.3-95.1) | 10.9(10.0-11.8) | .449(.432-.466) | 86.4(85.9-87.0) <.001
Neural Network 884 (.878-.890) | 54.6(52.9-56.2) 95.3(95.0-95.7) | 11.7(10.8-12.8) | .476(.460-.494) | 86.3(85.8-86.8) <001
Model TP ‘ FN N FP Sens (95%CI) Spec (95%CI Acc (95%CI) Diff Sens (95%)
Overall
UTI diagnosis 1447|2077 10432 1881 413 (39.7-42.9) 84.7 (84.1-85.4) 75.1 (74.4-75.8) NA
| XGBoost 2819|705 10432 1881 80.0 (78.6-81.3) | 84.7 (84.1-85.4) 83.7 (83.1-84.2) 38.7 (38.1-39.4)
Reduced XGBoost | 2626 | 898 10432 1881 | 745(73.0-759) | 84.7(84.1-854) | 825(81.9-83.0) | 33.2(32.5-33.9) Taylor et al., PLoS ONE 2018



Development and validation of models for detection of postoperative . . .
infections using structured electronic health records data and Monitorin ga nd Surveillance

machine learning
Kathryn L. Colborn, PhD*”“%", Yaxu Zhuang, MS¢, Adam R. Dyas, MD*",

: : Model Estimates
Retrospective study to develop and validate
. . . Beta OR LCL UCL Pvalue
parsimonious, interpretable models for Surgical site imfections
H H H (Intercept) —5.1187
con d u Ctl ng survel I Ia nce Of pOSto pe ratlve Phecode 080: “Postoperative infection” 2.7245 15.25 11.82 19.67 <.001
H H H H Phecode 1011: “Complications of surgical and medical procedures” 0.886 243 1.85 3.18 <.001
InfECtlo ns usi ng StrUCtu red S I eCt ronic h €a |th At least 1 antibiotic prescribed between 2—30 d after surgery 2.0891 8.08 6.51 10.02 <.001
Laboratory procedure: Blood culture 2.041 7.7 6.38 9.29 <.001
reco rd S d ata ) Urinary tract infections
. . (Intercept) —6.1696
Pr| mary outcome: Com pa rison to cu rated Phecode 590: “Pyelonephritis” 2.3597 10.59 4.44 25.23 <.001
Phecode 591: "Urinary tract infection” 1.9223 6.84 5.16 9.05 <.001
d ataset Of posto pe rat|ve 0 utco mes d ata fro m Phecode 592.X: “Cy§titis,” “Urethritis." “Urethral str?cture due to infection” 1.7764 5.91 3.6 9.7 <.001
Phecode 599.X: Various symptoms involving the urinary system 1.1322 3.1 2.36 4,09 <.001
th e American Col |ege Of Su rgeons Nationa | At least 1 antibiotic prescribed between 2-30 d after surgery 1.2781 3.59 258 5 <.001
Laboratory procedure: Urine culture 1.6599 5.26 3.78 7.32 <.001
Su rglca I Qu a | |ty | m p roveme nt Prog ram. Selp_)asti)soratory procedure: Clostridioides difficile PCR 0.4246 1.53 0.92 2.55 0.1
. . . . . (Intercept) —7.2263 <.001
P red |Ct0 rvaria b | es | nCI u d Ed COd I ng d IagnOSES Phecode 540.X: “Acute appendicitis,” “Appendicitis,” “Appendiceal conditions” 2.0447 7.73 5.53 10.79 <.001
Phecode 994.X: “Sepsis,” “SIRS” 2.4980 12.16 9.23 16.02 <.001
. o N . P
a nd proced u reS, N patlent mEd |Cat|0ns, At least 1 antibiotic prescribed between 2—30 d after surgery 1.6909 5.42 414 7.11 <.001
. Laboratory procedure: CBC auto diff 1.3637 3.91 2.07 7.38 <.001
d em Og ra p h ICS, Ia b resu |tS . Laboratory procedure: Blood culture 1.9005 6.69 5.36 8.34 <.001
Laboratory procedure: Magnesium serum 1.2173 3.38 2.65 4.30 <.001
. . . . Laboratory procedure: Peripheral blood smear 1.4547 4.28 3.00 6.12 <.001
. yp p
Analytic approach: penalised regression with Pneumonia
(Intercept) —7.3366
knOCkOffS fra mewo rk Phecode 480.X: Bacterial, viral, and fungal pneumonias 2.5952 134 9.17 19.57 <.001
Phecode 501: “Pneumonitis due to inhalation of food or vomitus” 1.7072 5.51 3.03 10.03 <.001
Phecode 1013: “Asphyxia and hypoxemia” 0.9214 2.51 1.67 3.78 <.001
At least 1 antibiotic prescribed between 2—30 d after surgery 1.812 6.12 3.59 10.44 <.001
Laboratory procedure: Magnesium serum 0.7905 2.2 137 3.56 .001
Laboratory procedure: Vancomycin trough 0.9937 2.7 1.84 3.96 <.001
Laboratory procedure: Respiratory culture 1.4024 4.06 2.52 6.55 <.001
Laboratory procedure: Blood gasses 1.511 4,53 3.02 6.79 <.001

CBC, complete blood count; LCL, lower confidence limit; OR, odds ratio; PCR, polymerase chain reaction; SIRS, systemic inflammatory response
syndrome; UCL, upper confidence limit.



Data-driven infection diagnosis




Applications of data-driven infection diagnosis

Prediction of serious
bacterial infection

Early detection of septic shock

Early detection of serious
bacterial infection

Highlight for specialist input
Learning health system
Prediction of sepsis

Early rationalisation of antibiotics
Outbreak detection

Early recruitment to clinical trials

Service monitoring and evaluation
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llIness onset Treatment

Treatment
response
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Enhanced monitoring
Prophylaxis
Pre-emptive treatment

Time



llIness onset Treatment

Treatment
response

Early treatment
Prognostication

Time



llIness onset Treatment

Treatment
response

Early treatment

Clinical decision support systems
Early specialist input
Recruitment to clinical trials

Time



TREATMENT
llIness onset Start Refinement End

Treatment
response

R

Clinical decision support systems
Early treatment escalation or
de-escalation

Time
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Surveillance
Outbreak detection
Service planning
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Time



Applications of data-driven infection diagnosis

Pre-treatment initiation applications
e Prediction of serious bacterial infection

. Prr]echtion/EarIy detection of deterioration e.g. sepsis or septic
shoc

* Early detection of serious bacterial infection

Post-treatment initiation applications
* Early rationalisation of antibiotics

* Early specialist input

e Recruitment to clinical trials

Delayed applications

 Surveillance and cluster detection
* Service monitoring and evaluation
* Learning health system



. . Treatment
Pre-symptomatic
response

Information availability varies across timepoints

Time



Prediction time frames

? = Sepsis Onset
Feature Window ‘ )
I = Alignment Point
Patient 1 T T
Left Alignment Patient 2 v
Prediction at Time of p— *
Admission - ®
Patient4 k= 7
Feature Window  Prediction Window
|- """""""""" | <Ppomm==as i
Patient 1 - .
Right Alignment Patient 2 ;
Diagnosis Ahead of Patient 3 : H
Sepsis Onset ! *
Patient 4 5 | o
il = o st 5 508 s v 8 86 4 S B R 6 & A 8 e SVRNS R i S B 555 € SRR ¥ S >
Length of Stay
Fig. 1 Left versus right alignment. Left alignment (top) versus right alignment (bottom). Cases are aligned at the alignment point, in the feature
window data are collected, the prediction window is the time of the prediction ahead of sepsis onset. Red sepsis cases, green non-septic cases

Fleuren et al., ICM 2020



Defining serious bacterial infections

All acute All acute presentations &
presentations treated as bacterial infection
define relevant sampling
frames (i.e. derivation
populations) for model
development.

Serious bacterial

infection Need to define extractable

EHR proxies of serious
bacterial infection to define
reference standard.

Treated as
bacterial infection



Defining serious bacterial infections

Serious bacterial Blood stream
infection infection

Possible extractable EHR proxies:

Serious bacterial infection?
Microbiologically confirmed?
Blood stream infection?

Sepsis?

Microbiologically

confirmed SBI Sepsis
Linder et al., Lancet Digital Health 2023



Defining serious bacterial infections

Common infection
syndromes Other

1Al




Defining serious bacterial infections

Table 2 Target condition definitions per paper per setting

Components of sepsis definition

Paper | Target condition definition as reported ICD I SIRS | SOFA I AB | Cult Grouped
ED Sepsis

Delahanty et al - 21 sign of acute organ dysfunction® None

- Antibiotic day and organ dysfunction within £2 calendar days of a blood culture draw

Haug et al - ICD-9 codes None

Horng et al - ICD-9 codes None
In- Sepsis
hospital | Futoma et al - >2 abnormal vital signs® None

- Blood culture drawn for a suspected infection
- 21 abnormal laboratory value indicating early signs of organ failure

Khojandi et al - 22 SIRS criteria None
- Retrospective manual examination
McCoy et al - 22 point change in SOFA criteria None

- Abnormal white blood cell count alongside an order of antibiotics within a 24-hour period

Severe Sepsis
McCoy et al - 22 SIRS criteria None
- >2 organ dysfunction lab results®

Septic Shock
Khoshnevisan et al - ICD-9 codes None
- Systolic blood pressure < 90 mmHg for at least 1 hour
- Mean arterial pressure < 65 mmHg for at least 1 hour
- Any vasopressor administration

Lin et al - ICD-9 codes None
- Systolic blood pressure < 90 mmHg for at least 30 minutes

- Mean arterial pressure < 65 mmHg for at least 30 minutes

- A decrease in systolic blood pressure >= 40mmHg within an 8-hour period
- Any vasopressor administration

Thiel et al - ICD-9 code None
- Need for vasopressors within 24 hours of ICU transfer

ICU Sepsis

Calvert II et al - ICD-9 codes Calvert
- 22 SIRS criteria for sepsis for a 5 hour period of time
Sepsis onset: beginning of 5 hour period

Desautels et al - 22 point change in SOFA criteria Seymour
- Time of infection: antibiotics between 24 hours prior to and 72 hours after blood culture acquisition (Sepsis-3)
Sepsis onset: earliest point of SOFA change

Kam et al - ICD-9 codes Calvert
- 22 SIRS criteria for sepsis for a 5 hour period of time
Sepsis onset: beginning of 5 hour period

Nemati et al - 22 point change in SOFA criteria 24 hours before and 12 hours after time of infection Seymour

- Time of infection: antibiotics between 24 hours prior to and 72 hours after blood culture acquisition (Sepsis-3)
Sepsis onset: earliest point of SOFA change or time of infection

Fleuren et al., ICM 2020



Defining serious bacterial infections

Annual Incidence per 10,000 hospitalizations
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Claims based (or clinical-coding based) diagnoses of sepsis have
poor sensitivity verses objective clinical criteria extracted from
EHR based on suspicion of infection (cultures and/or (V Abx) and
organ dysfunction.

Automatically extracted criteria may ‘over call’ sepsis if organ
dysfunction not attributable to sepsis or ‘miss’ sepsis if less than
defined minimum duration of Abx given.
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Rhee et al., Infect Control Hosp Epidemiol 2016; Rhee et al., Crit Care Med 2019



Defining serious bacterial infections

Diagnosing sepsis is subjective and highly variable:
a survey of intensivists using case vignettes

Improving reproducibility of ‘ground-truthing’ processes
* Increase expertise of graders

* Increase number of graders for each case

* Ensure unbiased disagreement resolution process

100% Predictions from: Ground truth from: Ground truth from: Ground truth from:
B Al Grader  Grader  Grader Expert  Expert  Expert Panel Panel Panel
1 2 3 1 2 3 1 2 3
@ 80% patent1 | @ | | @ || @ || @ C 2NN AEK BN RN BEN )
g @ O 0o O (2NN 2EK 2NN REN BEN )
o ] o ©| e O o |00 O e | o
8 coo — el oallealleal alleallg 0/ 0|le®
5 ” ; t id ti h e O |0 o
s ...agencies must avoid a precautionary approac o lolelle
£ 400 : : . e O 0 o
5 40% that holds Al systems to such an impossibly high o o loll®
5 . . . .. ||@® @ O O®
= standards that society cannot enjoy their benefits. o ool e
20% -
@ Disease presence I u u
@ Disease absence Concordance between Concordance between Concordance between
0% graders: 70% experts: 80% panels: 90%
Case A Case B Case C Case D Case E “/’\Ilt; ;gzzr(;i::fteh 40% 70% 100% 50% 70% 90% 60% 70% 80%
(Control)

B Severe Sepsis/Septic Shock m Not Severe Sepsis/Septic Shock

Highest uncertainty,
with a 60% range in
measured performance

Moderate uncertainty,
with a 40% range in
measured performance

Lowest uncertainty,
with a20% range in
measured performance

Figure: Al model evaluation against ground truth from different ground-truthing processes

Rhee et al., Crit Care 2016; Chen et al., Lancet Digital Health 2021




Data-driven diagnosis of serious bacterial infection

OVERALL AlM:

Use machine learning approaches to derive and validate data-driven diagnostic signatures of
serious bacterial infection in patients assessed in emergency departments with clinically-
suspected infection.

SPECIFIC OBJECTIVES:

e |nvestigate the impact on model accuracy of utilising different approaches to data labelling
of varying resource requirements: clinical coding, microbiological, composite +/- manually
curated.

e |nvestigate the impact on model accuracy of systematically incorporating proxies of existing
comorbidities and past medical history.

e Update outcome prediction at key clinical nodes: treatment initiation and treatment
review.



Liverpool Secure Data Environment — Current configuration
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https://pubmed.ncbi.nlm.nih.gov/26395036/

Potential datasets

Demographics Age, Sex, Residence Age, Sex, Residence

Consultations,

Administrative :
Other appointments

Admission, transfer, discharge dates

SUS/HES - Primary and secondary
diagnoses (ICD10);
Procedural codes (OPCS-4)

Acute and chronic illnesses

Clinical coding (READ —> SNOMED-CT)

Laborator Microbiology Microbiology
y Other laboratory (infrequent) Other laboratory (monitoring)
Tri
Observations ? . riage ar.1d :
routine monitoring
.- Inpatient and
Prescribing Acute and recurrent TTOs
Standard assessments
Standard Forms N/A (e.., VTE, MUST)
linical ? i g. tri
Free text Consultation notes Clinical notes ?exceptions e.g. triage

assessment, radiology requests




Sampling frame

General criteria for data use

Inclusion criteria
Adult aged >=18 years AND
Admission to LUHFT acute hospital site between 15t April 2017 and 315t October 2023 AND
Complete consultant episodes registered on patient administration system.

Exclusion criteria
Registered ‘opt out’ from use of medical records for population health and research purposes

Analysis specific criteria: Identify any serious bacterial infection in those with clinically suspected /
possible infection

At least ONE of the following must be present to identify record as possible infection:
At least one antibiotic prescription (excluding prophylatic antibiotics) OR
A blood culture request OR
Clinical coding diagnosis for infection syndrome AND Inpatient death

Analysis specific criteria: Identify serious bacterial infection in all acute attendees

Use general criteria Considerations

Clinician pre-existing biases in preselected
suspected infection population.

Class imbalance and less clinically-applicable
in all-comer group.



Reference Standard: Any serious bacterial infection

Reference
Proposal Advantages Disadvantages
standard P g g
C g . N Insensitive
Bloodstream Significant pathogen, excluding Objective HV

Restricts sampling frame to

infection contaminants Straightforward . )
patients with cultures
As per Lee paper minus sepsis Insensitive
Microbiology P pap P EHR extractable Restricts sampling frame to

criteria

patients with cultures

Clinical coding

Explicit codes for sepsis plus
major infection codes (SOS
bundle)

EHR extractable

Uncertain and variable
accuracy

Composite

As per Lee including sepsis
criteria +/- physiology &
biomarker response

Potentially EHR extractable

Circularity bias

Clinician
adjudicated

Manual notes review with
bespoke extraction tool with
interrater agreement in
sample vs. all

Robust, clinically credible

Hugely laborious for ?limited
gain; inconsistency;
information governance — re-
identification loops




Performance Evaluation Measures

Diagnostic accuracy at baseline — Pre-treatment initiation

Sensitivity, Specificity, AUROC, PPV, NPV, Precision-Recall

Diagnostic accuracy at treatment review —48-72 hour node

Sensitivity, Specificity, AUROC, PPV, NPV, Precision-Recall
Optimise calibration for low risk strata

Model diagnostics

Feature importance assessment — Added value of comorbidity data?




Data parameters - Feature set

Demographics

Age, Sex, LSOA, Ethnicity

Administrative

Admit date, time, location

Clinical coding

See next

Microbiology

Prior urine, blood, sputum, sterile site samples last 6 months: specimen date,
type, culture, organism code; specimen specific details

Other laboratory

Hb, PIt, WCC, Neut, Lymph, Mono, Na, K, Urea, Creat, eGFR, ALP, ALT, Bil, GGT,
INR, PT, APTT, Lactate, pH, HCO3, pa02, PaCO2, Glucose, Albumin, Ca, PO4, Mg
(First, Min, Max, Mean, Median)

Observations

Temp, HR, RR, FiO2, SBP, DBP, Sat, AVPU
(First, Min, Max, Mean, Median)

Prescribing

Acute & Recurre=*===~==wimticmalocos _:-_L.‘ :
Considerations

Assess full and limited feature sets -> ease
of implementation

Data cleaning, scaling and imputation
approach?




Categorising past medical history

* Pre-defined and selected comorbidities
* Literature review and expert consensus
* Data-driven approach

* All codes Primary care - Pre-existing code (e.g.

OPEN Safely) mapping SNOMED-CT to
broad diagnoses e.g. chronic liver
disease.

* Composite measures
* Charlson comorbidity index
Secondary care — Analogous packages
* Elixhauser Method for HES?

* Comorbidity count — Weighting?



Machine learning approach

* Preferred Supervised ML approaches — to be determined
* Multiple data types
* High dimensionality
* Repeated measures - Infection risk calculated at baseline and 48-72 hours.
* Dynamic vs static windows/nodes
* Chief considerations
* Interpretability
* Non-linear associations
* Implementation
* Assess limited models — based on reduced parameters

* Assess added values of comorbidity data — requires more complex data
integration.



Discussion points

* What is the optimal sampling frame?
* All comers or suspected infection?

* Tackling the reference standard problem
* Data driven approaches to dealing with labelling uncertainty
* Semi-supervised approaches

* How to best utilise prior comorbidity and infection treatment information

* Any value in tackling syndrome specific diagnostic models
e Relevant to stewardship

* Important for surveillance - > learning health systems

* Approach to incorporating information accrued after initial treatment initiation node?
* Dynamic vs static nodes



