Leveraging time series dependencies for clinical management of acute febrile illnesses using machine learning

Damien Ming d.ming@ic.ac.uk

CAMO-NET meeting 14th December 2023

Clinical scenarios

- A 59 year old man has been admitted to hospital in the UK with abdominal pain and is awaiting investigations. On day 3 of admission, he develops a fever and becomes less responsive.
- A 24 year old woman develops fever and body aches in Vietnam, and attends the local hospital. Over the next 3 days she develops some gum bleeding but then makes a full recovery.

Medical observation and patient dynamics

- Change in clinical state over time in the past is important for future prediction
- Methodologically, repeated measurements of different quantities a unique statistical challenge
- Pre-requisites: data of sufficient fidelity, linkage, fusion of data at different frequencies

Aims of session and discussion:

- Discuss challenges in synthesising time series information for acute care of infections
- Multi-modal incorporation of diverse data (data fusion) and emergent themes
- Implementation of models to the clinical setting

2 exemplar case studies

Bacterial bloodstream infections (BSI) using blood biomarkers

Dengue severity using pulse waveform and PPG

Example 1: Bacterial bloodstream infections (BSI)

- Significant healthcare burden (2.91 million deaths in 2019)
- Positive predictive value of blood cultures ~ 7.5%
- Result turnaround time 24-48 hours
- Priorities in different settings maximising NPV vs PPV

Research question

Can the use of longitudinal patient information help predict BSIs and what is the added contribution of such time series data?

Dataset – iCARE and EHR

- March 2014 Dec 2021 at Imperial College NHS Trust
- 20,850 patients undergoing blood culture sampling
- Biomarker data up to 14 days prior (where available) extracted

Microbiological definitions

 BSI state – according to WHO priority pathogens list ¹ (18.5%)

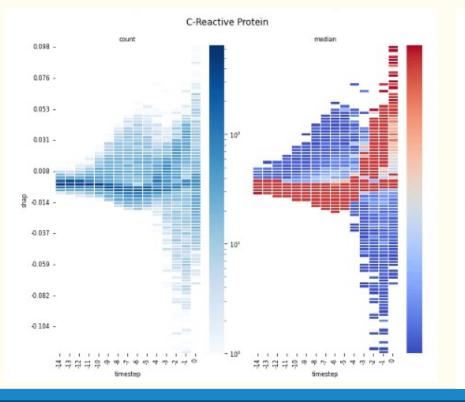
 Non-BSI state – no growth at 5 days or isolation only of one of ² (71.5%) ¹Escherichia coli, Klebsiella spp., Enterococcus spp., Pseudomonas spp., Proteus spp., Serratia spp., Citrobacter spp., Streptococcus spp., Staphylococcus aureus.

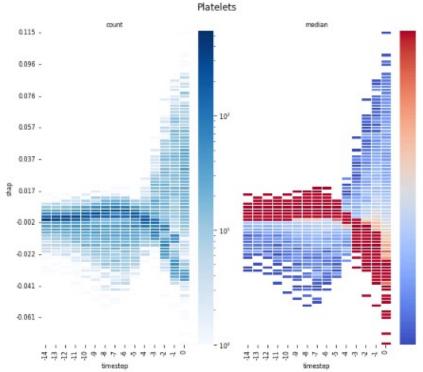
² Coagulase negative *Staphylococcus* group, *Micrococcus* spp., *Corynebacterium* spp. excluding *Corynebacterium striatum.*

Data methods

• Initial training and hold-out set temporal split

- 5-fold cross validation
- Missing values forward filled where possible otherwise masked
- A long short-term memory (LSTM) approach for time series data, with logistic regression and feature engineering as baseline
- Tuning using Bayesian optimisation

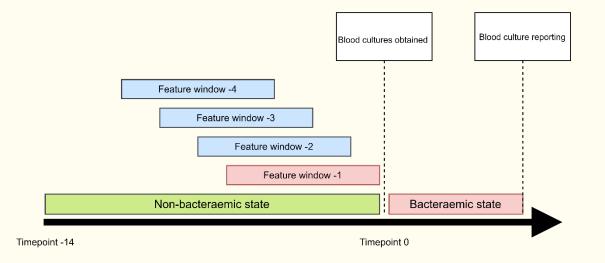




Handling of missing data and MNAR

- The pattern of biomarker acquisition and measurement is reflective of clinical need
- Forward fill, interpolate, imputation, masking
- Models are built on the premise that local practices remain consistent

What about a real-time monitoring system?



Synthesis of metadata to augment prediction

- Patient factors: immunosuppression status, risk factors, clinical assessment derived from natural language processing
- Laboratory metadata: time to positivity vs inoculum volume, information derived from MALID-TOF, use of adjunctive diagnostics e.g. sepsityper
- Fusion of data another challenge...

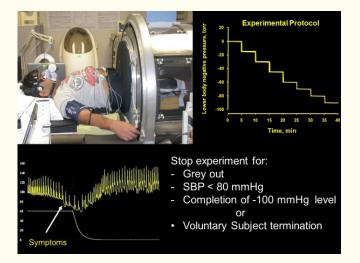
Example 2 – dengue risk prediction

- Patients admitted to hospital fulfil dengue with warning signs (and are at increased risk)
- Tools for close monitoring of patients are lacking

Wearables using photoplethysmography (PPG)

 Morphology of pulse waveform related to cardiovascular status

(and also derivation of pulse, SpO2, respiratory change)



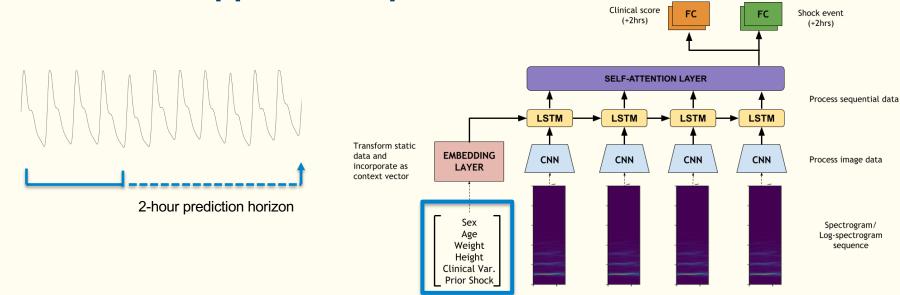
Research question

Can pulse waveform alone provide safe patient monitoring in dengue (and prediction of risk in) – and how can its performance be enhanced?

Methods

- Prospective recruitment of 153 patients admitted to Ho Chi Minh City with acute dengue (2021-2022)
- PPG monitoring for 24+ hours alongside standard vital signs monitoring
- Approach using PPG signals and prediction of outcomes e.g. NEWS2, dengue shock, other relevant outcomes
- Can we incorporate relevant clinical data to the signal waveform too? Or synthesise with other machine learning models?

Multi-modal approach to prediction



Dr John Daniels and Professor Pantelis Georgiou Centre for BioInspired technology, Imperial College London

Beyond patient related factors

- Synthesis of seasonal, epidemiological, population level data as a proxy of strain virulence etc...
- Dengue prediction and seasonality factors

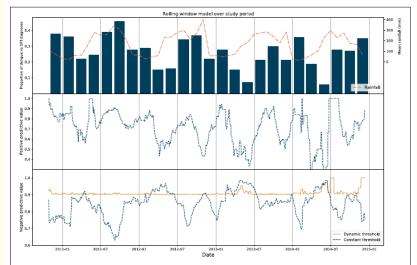


FIGURE 2 | Results of rolling window model. Top: Proportion of dengue diagnoses grouped in 2-month bins plotted against mean rainfall in Vetnam for the entrie study period. Middle: Positive predictive value of the rolling window model for the constant threshold model only, with each point on the graph representing the upper range of the 30-day window used as the test set. Bottom: Negative predictive value of the rolling window model for the constant and dynamic model, with the NPV of the latter model fixed to > 90%.

Conclusion

- Time series dependencies are important and a move away from static scores applied at one timepoint could bring benefits to clinical care
- Leveraging such modalities relies on availability of data
 - Connectivity and electronic healthcare records
 - Role of signal acquisition such as through wearable devices
- Complex diverse datasets need synthesis to provide relevant classifications/predictions