Imperial College London

Machine learning based clinical decision support for antimicrobial stewardship

William Bolton

CAMO UK Data AI Meeting

21st June 2022

Imperial College
INTRODUCTION
IV TO PO
MULTI-MORBIDITY
FAIR & USEFUL AI

Machine learning can support optimised antibiotic
Generation of the construction of the constr

A

B

Antimicrobial resistance (AMR) is a global threat. One key strategy to tackle this is to undertake stewardship and optimise antimicrobial use Clinical decision support systems (CDSSs) utilising machine learning (ML) have been developed to assist with managing infections

Imperial College

1

INTRODUCTION

IV TO PO

MULTI-MORBIDITY

FAIR & USEFUL AI

Fair interpretable machine learning for individualised IV to oral switch decision making.

CLINICAL GUIDELINES AND REAL-WORLD DATA

UK Health Security Agency Guidance National antimicrobial intravenous-to- oral switch (IVOS) criteria for early switch	crobial intravenous-to- S) criteria for early switch							
MIMIC n=8,694 eICU n=1,668 n=5	Short feature set n=5							
Metric 1 st threshold 2 nd threshold								
AUROC 0.78 (SD 0.02) 0.69 (SD 0.03)								
Accuracy 0.76 (SD 0.01) 0.83 (SD 0.01)								
TPR 0.80 (SD 0.05) 0.48 (SD 0.06)								
FPR 0.25 (SD 0.02) 0.10 (SD 0.02)								

INTERPRETABLE DECISION SUPPORT

2 threshold

Imperial College

IV TO

MULTI-MORBIDITY

FAIR & USEFUL AI

Tapping into unused clinical knowledge for multi-morbidity in machine learning.

SIMILAR PATIENT RETRIEVAL TASK

SNOMED	СТ
	The global language of healthcare
D1 'is a'	

Disorder groups

Genetic disease Heart disease Hypertensive disorder Infectious disease - bacterial Infectious disease - other Infectious disease - viral Malignant neoplastic disease

Mental disorder Other

Disorder of immune function

Arthritis Diabetes

t-SNE visualisation with disorder groups

Imperial Clinical Analytics, Research and		SNOMED	Rocheteau	One hot	
Evaluation (iCARE) ent : function		embeddings	method	encodings	
	SNOMED similarity score	1.78	3.52	4.40	

Co-morbidities

Patient A	Asthma	Hypertensive disorder	Osteo- arthritis	Type 2 diabetes	Hyper- cholesterol- emia	Anemia	Gastro- esophageal reflux disease	Hypo- thyroidism			Identical Similar	
SNOMED Embedding	Asthma	Hypertensive disorder	Osteo- arthritis	Diabetes	Hyper- lipidemia	Anemia	Gastro- esophageal reflux disease	Obstructive sleep apnea			Dissimilar	
Rocheteau score	Asthma	Hypertensive disorder	Rheumatoid arthritis	Diabetes	Hyper- cholesterol- emia	Anemia	Gastro- esophageal reflux disease	Hypo- thyroidism	Coronary arterio- sclerosis	Pulmonary embolism	Chronic kidney disease	
One hot encodings	Asthma	Hypertensive disorder	Osteo- arthritis	Type 2 diabetes	Hyper- cholesterol- emia							
Patient B	Osteo- arthritis	Alcoholism										
SNOMED embedding	Osteo- arthritis	Alcohol dependence										
Rocheteau score	Osteo- arthritis	Alcoholism	Peripheral nerve entrapment									
One hot encodings	Osteo- arthritis	Alcoholism	Peripheral nerve entranment									

IV TO PO

FAIR & USEFUL AI

Imperial College Patient, public and stakeholder views as well as ethical theories have been considered to ensure solutions are fair.

ETHICAL VIEWPOINT

Comment

Developing moral AI to support decision-making about antimicrobial use

n artificial intelligence approaches in nsensus on the optimal approach to decision-making in thi imicrobial prescribing raises importan text In this article, we aim to explore notential ethical framew oral questions. Adopting ethica

PRIMARY RESEARCH

London I would like to acknowledge the contribution of the following individuals.

Dr Tim Rawson

Professor Pantelis Georgiou

Professor Alison Holmes

Mr Richard Wilson

Dr Bernard Hernandez Perez

Dr David Antcliffe

Dr Damien Ming

Dr Esmita Charani

Imperial College London

Thank you!

William Bolton

CAMO UK Data AI Meeting

21st June 2022